In order that the passover statements by first century writers may be understood, it is essential that their festal terms be oataloged and interproted. Generally speaking, these ritual words and phrases are an unknown lenguage, and may be of quite different meaning from their English translations. For example, the Greek word ráv $X a_{2}$ or ф'árka, as sometimes ocours, is found about twelve times in Josephus. It is translated passover, and we commonly think of the paschal supper. But oommonly, with Josephus, the word is interchangeable with the eight-dey feast of unleavened bread, and only three times does it refer directly to the 14 th day of Nisen, while only three times does it signify the pasohal lamb. And apparently no place has as yet come to light where designates the supper alone, although it may refer to paschal sacrifice and supper together. In Josephus, there are about twenty-five reforences to this sacrifioial oeremony.

Again, a writer is scmetimes speaking of ceremonies throughout ($\mathrm{ka} \mathrm{O}^{\prime}$ ' ${ }^{\prime} v$) the foast of unleavened bread. Again not. But in any event, the analyst must carefully compare any one atatement with all the other oognate recorde before valld oonclusions oan be drawn. Therefore every máo X a sentence must be seriously examined, for the writer by no weans invariably, as some conolude, thereby refers to a sacrificial supper on a spooific date. Moreover, with Josephus, it is ensy to overlook details. Consequently it seems worth while to analyse a few important passages from these authoritative witnesses in the time of Christ--statements which have provoked much disoussion. For oonvenience, the most important texts will be reoited.
I Wars II.I.1-3 and Ant. XVII.IX.1-3
The oiroumstances underlying these two Josophus texts appear to be as followe: The seven days of public mourning for Herod the Great ended at ovening, apparently at the evening ineunte of 14 Nisen , at which time a sedition
arose among the Jews. The time is indicated in Section 3 of the first text:

 Translation (mine)--
And now that the feast of unleavened bread had already come, which is called pasha by the Jews, one that contributes such a large number of sarifloes, countless people, on the one hand, stream in from the country for the ceremony, while, on the other hand, those mourning for the doctors stood in the temple procuring recruits for their faction.

The foregoing sentence outlines the contrasting situation. Josephus adds that the clamors of the temple party were heard all over Jerusalem. At the same time the masses had lodged in the plain and were ready to offer their paschal lambs. Evening had come on, as indicated by the drunken rioting of Arohelaus. ${ }^{2}$ It was his conduct that paused the sedition. He countered at once by sending his general against the Jews, but they drove him away with stones. Then a tribune with a cohort of soldiers was sent. These were killed. After this the people "betook themselves to their sacrifices as if they had done no mischief." Finally Archelaus sent his whole amm--the footmen into the city, and the horsemen into the plain, who fell upon the people as they were offering their lambs, and killed three thousand.

It is quite obvious that this series of episodes points to one evening on-ly--that of the paschal sacrifice. Antipater identifies the sedition as occurring at this time. ${ }^{3}$ In addition, he catalogs this sacrifice as a private offering (idiots Duoiais). Similarly Philo. We know from the sacrifice date-14 Nisen-that the moon had come to her full, and on this evening rose "full" in the east as the sun set in the west. The people actually made the assault with lambs in one hand and stones in the other, while the wailers in the feme pile urged them on. ${ }^{5}$ The description is significant in showing (1) that the passover lambs were at this time being slain in the evening, and (2) that they

[^0]were being offered in the outskirts of the oity, "around the sanctuery," not in it.

Such was the temper of the age in whioh Jesus was born.
II Ant. TI.XIV 6 IIT x
It suciug inconsistent to make Josephus say in one place that the paschal lembs were being slain from 3.00 to $5: 00 \mathrm{p}, \mathrm{mo}$, with the supper necessarily ocourring on the subsequent evening, when in other passages he describes the whole passover ceremony-scorifice, feast, and burming of the remants-as taking place on one day only, the 14th of Nisan. Here is one of his desoriptions of the 14th day:

Translation (mine)--
But when the fourtsenth day had come, all, in readiness to start, 8 acrim ficed, and purified the houses with blood, using bunches of hyssop for sprinkling, and after the repast burnt the romnants of the meat as people ready for departure.

In this passage three principal aots are tied to the 14th of Nison-the sacrifioing, the purifying, and the buming of the remnents after the supper. The oeremony is oonfined to one complete sintence with kai conneotives. Consequently it ie inoonsistent that up to the word "YyviSov, it is 14 Nisan, but that from there on it is 15 Nisen. Ard please note that Josephus adds, "to this day we keep this saorifice in the satice customary manner." (cf. Engilsh text.)

A text similar to the foregoing is found in Philo, for which the claim has elso been made that it represents two dates. I quote Dr. Colson's translation of this passages

On this day every dwelling-house is invested with the outward semblence and dignity of a temple. The victim is then slaughtered and dressed for the festal meal as befits the ocoasion: The guests assembled for the benquet
anto IT xiy.6. Tr. by Thackeray, Loob classioal Library.
have been cleansed by purificatory lustrations, and are there not as in other festive gatherings, to indulge the belly with wine and viands, but to fulfil with prayers and hymns the custom handed down by their fathers. The day on
 be noted. It is the 14th of the month, etc.?

In this description both sacrifice and supper are featured. The word $\in \mathfrak{v} w-$ Xias means feast. And in addition, it is the national feast about which Phi10 is discoursing, and he says plainly that it was kept on the lith of the month. There appears to be no place for any l5th-dey supper in this text

Josephus has altogether three descriptions of a 14 th-day passover, the first of which we have cited. A second text is as follows:

 oûvar Tipou

Translation (mine)-m
And we were commanded to offer every year the sacrifice called which I previously said we offered upon leaving Egypt, indeed in the month Xanthious-owhich we call Nisan and it begins our jear-oon the isth day nccording to the moon, the sum then standing in Aries, for in this month we wore freed from Egyptian bondage, and so we do keep it in companies, nothing of the victim being left until the next dey.

The principal verbs in this sentence are two évóprotv kail Tधhoû $\mu \in V$. There is no specific word here for paschal supper, but the one word fuoía is called máoxa, and in this long sentence apparently represent is tho whole ceremong, and that taking place on the 14th of Nisan. For in the concluding clause, emphasis is mede that no piece of the victim was kept until the next dey. Thus it must have been eaten on the 14th. Josephus must therefore have had in mind not only the sacrifice, but also the eating of the are in the equation Ivoía = máoXa. Furthermore, in his subsequent sentence he roes on to describe the service of the lath day, which he says succeeds the

[^1]How therefore could the supper have been part of the 15 th? It surely would appear out of turn here to date the saorifice and supper other than the 14th of Nisan.
 interesting sentence, but shows that josephus understood the relation of early astronomy and of the anoient agricultural seasons to his own time. For, alwith erefence to the stans'
though at the time of the exodus the vernal equinox, wes nearly two weeks lator than in the first sentury, ${ }^{9}$, and the pasohal season probably equally as late, yet in both pasohal periods, the sun was in Aries during a common-year passover, but in Taurus during a leap-yoar passover. There was a oontrasting difference, however, between the period of the exodus and that of the first cextury. In the time of Moses, the word Aries could refer only to the oonstellation, for the signs of the zodisc were not desoribed until the Nabonassar era. But in the first oentury, the pasohal season of a common year could occur only in the ectual aien Aries, for already, due to preoession, the vernal equinox had retrograded into the adjacent constellation Pisces. ${ }^{10}$

The fact thet Josephus does not mention the sign, would indioate that he refers to the oonstellation, and hence to the time of Moses, whose passover he is desoribing. In addition too, Josephus is obviously depioting the passover of a common year, and his language appears to imply that such was the ohar aoter of the year when Israel left Egypt. For under the seventh Egyption plague, the barley was in ear and the flax bolled (Ex. 9:31). This must have been at least three monthe before the passover, and very early indeed for barley oars, even though the season in Egypt was earlier than that of Pelestine.

A third 14 th-day passover by Josephus relates to the time of Darius I, when the second temple had been completed. The text reads:

[^2]

Translation (mine)--
And they kept the feast in a state of purity with women and children, ancording to the law of their fathers, and having fulfilled the sacrifice named mod ra on the 14th dey of the same month, they feasted for seven days, sparing no expense, but bringing whole burnt offerings to God, and offering sacrifices of thanksgiving . . .

In this text Josephus makes a difference between the seven-dey feast of unleavened bread as a whole, with its distinctive offerings, and the sacrifice named maj $X a$, which he says was completed on the 14th day. We should not therefore expect the raja X a ceremony to extend over into the lith day. The
 to later--the sacrifices pertaining to the seven-day feast.

Why then should we conclude that either Philo or Josephus would present a changed emphasis regarding the 14th-day passover hereto described? Apparently they do not do this, but their festal terms are not always understood.

III We wish to compare two more texts--one each from Josephus and Philo, and both of similar trend. With reference to these two passages, the claire has been made that the writers thereby place the paschal sacrifice on the afternoon of the 14th of Nisan, and the supper on the subsequent evening of the

15th. The text by Josephus reads:

 Ouriav our éháóowv adv
 ádas خंpilluךoav, etc.

[^3]Translation (mine)--
So, when the festival had come-ilt is called -during which, on the one hand [-] they saorifice from the ninth hour to the eleventh, but on the other hand [] as it were a little company of not lesa than ten gathers around the offering, for it is not permissible to dine alone, and ofton as many as twenty are numbered, these high priests countod as many as 250, 000 of sacrifices, sto.

In this scene there are two contrasting saorifioial ocoasions: (I) The afternoon starifioes, as indioated by the clause, and involving the whole feast, so often called. by Josephus, as in this text; and (2) the pasohal sacrifice and supper, represented by the ... olause, around whose tam blea the small groups of ten or twenty assembled. The afternoon offerings embraced the -murnt offerings, thant offerings, and the peace offerings. ${ }^{23}$ These saorifices began in the afternoon of the 14 th of Nisan, 14 and continued throughout the festival. The peace offerings on the 14 th day were also called passovers ${ }^{15}$ Not all the peow ple necessarily took part in the afternoon sacrifices, at which time, obviously, no aocurate count could have beon mede. The pasohal oompanios, on the other hand, included the whole nation, and hence it was only at the time of this ceremony that a striot count could have been oarried out. In this text Josephus does not state at what time of day the amall group sacrifioe oustonarily ooourred; but in Wars II. 1.2 and II. 11.5 he had already featured it as an evening episode, ${ }^{16}$ and Iater, in Antiquitios, he several times desoribes both seorifice and supper as belonging to one and the gme daymothe 14th of Nisan. These texts have been discussed. Hence the peschal ceremony was obviously an evening event during the life of Josephus.

The foregoing inoident took place in the time of Nero, whon Cestius Gallus wished to inform of the number of Jows in Jerusalem when the Jowish revolt 17 was just begiming--probably about 66 A.D.

13
Ant. XI.iv. 8 and Wars TY.vis.2.
14 Maímonides, De Sacrifioils Liber, oap. dec., sec. 12. Tr. by Compiegne de Vell. Londini, 1683.
16 Deut. 16:2;2 Chron. 30:16,17.
16 It was the evening drunkenness of Archelaus that started the Jowish sedition which acoompanied the pasohal ceremony.
17 Wars II.xiv.3. Loob Classical Library (margin).

The companion text from Philo is equally signifioant:

Translation (mine)-
After the now moon festival is the fourth foast--the Crossing-feast-whioh the Hebrews call - in their native tongue, in which all the people, old and young together, honored on that dey with the dignity of the priesthood, sacrifice meny myriads of riotims from noon until evening.

This text introduoes the feast called the Crossing-feast by Philo, but - In native Hebrew. The writer is speaking of a speoific day of the festival-a -a day on which old and young alike were honored with the office of priest. The day in point must have been $14 \mathbb{N} 1 s a n$, when the paschal lambs were offered, but throughout the whole day, the people, also in conneotion with their peace offeringe. if levitically clean, aperformed priestly services in the templen The olatm has been made that the "myriads of victims from noon until evening" included the paschal saorifioes. But this olain is inconsistent with ohapter xxvif, in which this text is found 3 for at the end Philo deolares with mphasis that both passover sacrifice and banquet were oelebrated on the 14 th day. Er could not therefore have numberod the with the afternoon victims, for with this understandiag, the banquet would necesserily have been sorved on the evening ineunte of the 15 th!

Moreover, in De Vita Mosis Philo again states that the 14 th day was clearly appointed for the paschel rite. ${ }^{19}$ And he further marks the paschel doy astronomioally when he says-a
moon on that day appear upon [] and up [] to eaoh other in undivided rays of light).

[^4]Now the "upon and up" appearance of the paschal sun and moon always oocurs after the moon has fulled, and therefore at tie very beginaing of the 14th of Nisan, when at sunset the sun is loweriry upon the western horizon: wille in the erot the moon, now full, is rising up simaltancougly. The Babylonians said that the god was being seen with the god. Sut with the Hebrews, the presence of the paschal full moon in the eastern sky together with the wesGering aun, was an astronorical event that pointed to the slain lame And the people bowed their heads and worshiped-not sum and moen--but the Lemb of God, of whom the blecding saorifice was at that very moment a firure. It seems wost improbabie that this solemn and impressive ceremony was ever ohenged by the Jews until foroed by Romen persecution to do so.

In near eastern oountries the Nisan moon regularly fulls on the lath of the lumar month. 22 But not so in the seventil month, whose fecist of Taberneciea in this text Philo is omparing with the pasohal l4th. lle states thet the autumn feast case on the lith for the same reason that the spring feast occurred on its date, namely, because the world was then full of light. The swi shone all day, and the moon shone all nisht. ${ }^{23}$

In the autum, however, the astronomioal conditions are quite ijeferent from those in the spring on eooourt, of the Narvest Moon, which, toward the middle of the Jewish seventh month, rises full about sunset, for sever al evenings in suocession. ${ }^{24}$ But in the sprinf month Nisan, the moon rises full at sumset only onoe, and that at the beginning of the pasohal 14th. Thereafter the moon appears about an hour later each conseoutive night. Mence the feast of Tabernacles began in fullness of lipht even though the moon may have fulled several days earlier than the 15th.

[^5]Our coatext shows that Philo definitely understood the astronomy of the Jewish feasts. It therefore seems very inconsistent to cherge hin with confused and contradictory statements as we shall have to do if we are to conolude that his arternoon sucrifices included the paschal lambs. He is in agreement with the OT when he assumes that on the pasohal 14th throughout the whole day the nation was honored with the dignity of the priest's office. In 2 Chron. 30:16,17 this honor appears to be respected. Here, on account of levitical unoleanness, some of the people did not offer their passover peace offerings in the temple-a statement suggesting that there were some who did, as in 2 Chron. $35: 11$.

No confusion in any woy arices in our Philonic text by the interpretation that the "myrieds of viotims" comprised the burnt offerings, thenk offerings, and peace offorings, as we have explained for Wars VI.ix.3. With this understanding, the paschal ceremony had already been oelebrated at the sunset beginning of the paschal 14th. And though all the rest of the day was still the 14th, yet it wes not the time of the peschal sacrifice. This simple exposition implies that in the tine of Philo and Josephus the ancient ceremonies were still in operation. If such were not the oase, then why should josephus sey, several tines over, that in his own dey the people kept the pasohal rite the sune as in the time of the exodus. 25

The diffioulty which has arisen over these texts largely comes from the assumption that the word always refers to the paschal ceremony. on the oontrary, as has been pointed out, this word oomonly refers to the whole feast of unleavenod bread. And no different meaning should be asoribed to it unlese represented in the text.

25 Ant. II.xiv.6; IIT. x. 5 ; Against Apion I. 8.

After the destruction of the second temple in 70 A.D., when the lamb was no longer sacrificed among the scattered Jews, the expressions "passover" and "unleavened bread" came to be used interohangeably. In Josephus we find instancea of such usage. ${ }^{1}$ But in the OT sense, Greswell, for example, sees an important difference between these two feast terms:
"It is possible to distinguish between the Paschal saorifioe as such, and the feast of unlesvened bread. The proper name of the former is to pascha-the proper neme of the latter, ta azuma; the proper time of the former was the fourteenth of the month Nisan--the proper time of the latter, from the fifteenth to the twenty-first inolusive." 2
is the foct that
And favoring these time limitsa Daniel fasted just twenty-one days in the first month of Cyrus' third year (Dan+10:1-13). Obviously, he must have counted the passover as the fourteenth, and that the cinditional seven-dys ${ }^{\prime}$ feast reached exactly to the twenty-first dey inolusive. This problem was perplexing to early Christianity, and one frequently disoussed.

Let us follow up the primitive history of this fourteenth day. [. "In the beginning of the Christian ohuroh, the Apostles and those who followed tinum for one humered years after, kopt the passover of the Jews on the fourteenth dey of the first month." This statement is by Soaliger, and he based his deduotion upon "Eusebius, anoient ecolesiastioal history, and Nicephorus Callistus.*3 Luke's record shows conclusively that Paul kept the passover, as also his ohurohes (Acta 20.6).4 Doubtless the other apostles did likewise. And two centuries later, in a letter to bishop Viotor at Rome, the Christian priest Polycrates, fifest mentionis Philip and his three daughters, John the Beloved, his disoiple Polyoarp, Thrasus, Saggaris, Papirius, and Molito, thon adss

[^6]
"These all observed the fourteenth day of the passover acoording to the gospel, desisting in no respect, but following the rule of faith." 6

And henoe these commuicants of western Asia were called Quartodecimans, or "fourteenth-day" people, and they atrenuously contended for the paschal institution whioh the Apostle John had established. Bishop Viotor condemned and excommonioated these Asian ohurchese In response, Irenaeus, Gallic bishop of Lugdun, wrote to Viotor, charging hin with impiety for his wioked deed. 7

This fourteenth-day controversy continued oven as late as the eighth century, especially mong the Celtic ohurohes of the north. 8 They olaimed orim gin from the East, and insisted that their forefathers had been taught by the Beloved John with regard to a fourteenth-dey paschal celobration. In regulatof alexandria, ing their feasta they mdopted the lunar oyel of Anatolius, which was based upon a fourteenth-day passover on any day of the week. 9 Rome protested, and eventually the Colts yielded to her missionaries, who taught the passover "of on Sunday, the resurrection" along with a "fifteenth-day" cruolifixion. In fact, many the enonmpt
 the fifteenth day of the first Jewish month. 10

Thus the oyele of Anatolius of Alesentrfe-mo of the oarliest-mid not meet with favor at Rome. At this time nearly every ohuroh had its paschal oycle, and overy bishop was necessarily a oaloulator ${ }^{11}$ The counoil of Nicaea did Iittle more than to stipulate that the passover should ocour on the Lord"s
 Gaul, the oyole of Vietorius flourished, ${ }^{13}$ while Galliean churchos under

[^7]Gregory of Tours followed Anatolius. 14 . In the yoar 577, for example, Spain kept passover in Maroh, France, in April. ${ }^{15}$ But, amid all this confusion, the western ohuroh established her oanons and missals upon the cycle of Dionysius Exiguua. The Dfongsian cyole was built up upon Cyril's Alexandrien tables, which followed those of Theophilus. These were in Greok discourse, and had to be turned into Latin. The problem was further complicated becanse Cyril's cyole wal based upon the Egyptian year, and hence all the new moons and lunar number: had to be changed over into the Roman form of year. Nevertheless, no oyole was ever more renownod than that of Dionysius, who established a beginning for the Christian ora, and a oalendar for the ohurch of Rome ${ }^{16}$

This brief outline of the early history of the ecclesiastioal oyole indioates how oomplicated a problem in ancient Jewish time may become, and accounts for the many assumptions by which it is todsy confronted, some of which are very old. While the Oriental ohurohes, follewing John the Apostle, kept passover on the fourteenth, and the western ohurch taught that Jesus died on the fifteonth, in the mean time, the Jewish rabbinioal calendar, based upon the Talmud, and as later ondorsed by Maimonides, also introduced a passover on the fifteenth, and changed all its months to a month-earlier season. ${ }^{17}$ The exant dato of each change is not knowne The evidence, however, is umistakable. The question of the true pasohal month was one of serious oonsequence to the oarly churoh; and a change in Jewish pratioe that resulted repeatedly in twelfth-month passoveram in Adar-and andimes oven before the equinox, it debate soems $\bar{A}_{\text {h }}$ has loft a long record of ${ }_{\text {人 }}$ ditounesion whether passover should occur before or after the vernal equinox. The Jews appear to have been chiefly respon-

[^8]sible for this agitation. But we should not forget that the Jews at this time were under severe pressure from persecution. However, the anoient bib. lical laws with respeot to the passover season are simple and speoific, and the Christian church commonly acoepted the biblioal view. This is nioely expressed in the following words of Theophiluss
"For the month of now fruits, ${ }^{18}$ as I before said, is not in the twelfth month [Adar], when winter still hangs on, and when the new fruits are not yet ripe, and when indeed the sickle oannot be put to the harvesta. For the divine law has in particular constituted this [the sickle] as the sign of the first monthe" 19
also
Novertheless, many other passover arguments, besides athe problem of the true paschal month, are the horitage of twentieth-century students of anoient disoussions
Jowich time. Theseafor the most part arise (1) from the question as to what The the event marked the passover date-whether ${ }_{\wedge}$ lamb sacrifioe or paschal supper; and (2) from the problew of linking the true passover date with the right day of the woek in the oruoifixion period. And in addition, there is the queation as to what day the short poriod ben $h_{\text {n-krbsyis }}{ }^{20}$ belonged-whether to the ensuing day, or to the day before. With the Karaites and Samaritens, this Hebrew phrase represented the time between sunset and twilight; with the Rabbiniste, it cane before sunset, from about three o'olook and one ${ }^{21}$ Jhis was the traditional hour of prayer (aets 3:1; 10:3,30; Dan.9:21).

In any ovent, in this short period, the daily evening offering of the lamb, the annual slaying of the passover lamb, the lighting of the temple lamps, the offering of the evening incense, and the setting sun-بall took places for in connection with each one of the series, the phrase"betwoen the
 of occurrenoe 10, Josephus, and the Talmud are in full agreement as to the order af the inoidents as here 11 sted. ${ }^{23}$
[is translated "new fruits."
18 The pasohsi month Abib signified "green ears," which in the Latin version 19 Aegidii Bucherii, "De Dootrina Temporum," p. 472. Antverpiae, 1634.
20 A dual Hebrew phrase meaning "between the two evenings."
21 Cf. Gesenius.
$22 \mathrm{Cf}_{\mathrm{n}}$ margin of Num.28:4, Ex.12:6, Deut.16:6, and Ex. $30: 7,8$. In Deut.16:6, only evening" is given in the Hebrew, but Exol2:6 supplies the dual forme 28 Philo Judaeus, "Works," Vol.III, p. 213. Tr. Yonge. London, 1855. Cf.Jasephus, Ant.III.VIII.3. She Talmudie reference found in

Edersham, alpred. "The Temple," p.223, note. Hadder and Stoughtou, new York.

The Spirit of propheoy umistakably dates both the slaying and eating of the paschal lamb at the evening ineunte of the fourteenth day of Nisan. 24
This argument is apparentiy oonfinmed by the oharacter of the ovents whioh cocurred in the period "between the two evenings"-meaoh one of whioh poirited toward a day just beginning, and not then at the day ending. The burnt offering represented consecration of the nation necessarily for the onsuing night 26 the burning lemps offered Iight for the approsching darkess; the odour of the burning inconse at sunset symbolized the merits of Josus applied to the prayers then asoending, not to those of the previous das; ${ }^{26}$ the sinking sun manifestly dated the new day, not the old. It was therefore an eventiof doalendar signifidanoe: when the paschal lemb was yearly sacrifioed in the speoific time designated by Moses as ben hè drbavin. The offering unqueationably must have belonged to a new day, either just begun, 0% about to begin! And

	Therofore ben ha-drbayim of the fourteonth had to came at the ond of the thirteonth; and in no oaso, to the fifteanth. fourteenth, whon it would belong to the fifteenth.	F the seme eve. ion date whether. ument is rabbinilain as if on the Th alone of the pasath of the Lamb of OT - lemb on the fourz on the same date. mullifies the argupy also lifts a and Soaliger, with

[^9]The Spirit of propheoy umistakably dates both the slaying and eating of the paschal lanb at the ovening inounte of the fourteenth day of Nisan. ${ }^{24}$ This argument is apparently oonfirmed by the oheracter of the ovente whioh occurred in the period "between the two evenings"-meaoh one of whioh pointed toward a day just beginning and not at the day ending. The burnt offering represented conseoration of the nation necessarily for the ensuing nights 25 the burning lamps offered light for the approaching darkess; the odour of the burning incense at sunset symbolized the merits of Jesus applied to the prayers then asoending, not to those of the previous days ${ }^{26}$ the ainking aun manifestiy dated the now day, not the old. It was therefore an event of acalendar aignifioanoe when the paschal lamb was yearly sacrifioed in the speoif10 time deaignated by Moses as ben hanarbayim. The offering unquestionably must have belonged to a now day, either just begun, or about to begin! And the pasohal supper, of course, was sorved soon after during the same eve.

And it makes little differenoe to the involved crucifixion date whether the lamb was slain before or after sunset-whether the argument is rabbiniocil, or Earaltio. ${ }^{27}$ In etther oase, the Ismb was obviously slain as if on the daming of a new dey. Draming

With reference to the fulfillment of the type, the death alone of the pasovar the supper
ohal 1 mmb soems to have priority ain profiguring the death of the Lemb of God (1 Cor.5:7). And therefore, the sleving of the typical lemb on the four-teenth-whioh all admit-could only be met by a orucifixion on the same date. Consequently, the symbolic meaning of the type neoessarily nullifies the argument that assumes a oruoifixion on the fifteenth. Astronomy also lifts a warning finger againet a "fifteonth" oruoifixion Friday ${ }^{28}$ And Soaliger, with

[^10]some, the father of ohronology, and one who was readily familiar with all the oyoles of oarly Christianity, reaches the following conclusions
"For without any controversy, Christ ate the passover when the thirteenth of Nisan was onding, and the fourteonth beginning that is, in the evening which the fourteenth of Nisan followed. Conoerning this no one, oven a little erudite deubts. For, after sunset of the fifth doy of the week, the Jewish sixth doy was ontering, even to sunset of the dey of Venus [Friday], after whioh the Sabbath oeme on, even the fifteenth of Nisan, the solemm foast. Hence the whole fourteenth of Nisan intervenod between the Lord's supper and the beginning of the solomn paschale" [Feast of unleavened bread]. 29

The OT offers other convincing proof that both lanb saorifice and paschal supper belonged to one and the ame Jowlah day. There are altogether aeven different passovers in the OT, and these are dosoribed as boing oither "killeds" "eaten," or "kept"--in each case on the fourteenth dey of the first month. ${ }^{30}$ Now it should be olear that such adedeription involves the wisole passover service-not merely the offering of the lamb. To "keep" the passover, as outined in Exodus 12, meant to slay the lamb, roast it, eat it, and burn the remnent: of the feast, and these aote are all included in the seven texte-wall on one datel Moreover, five of these passovery are mentioned an "kopt" on the fourteenth.

In Nume9:11, the Hobrew text is very explicit: "In the fourteenth day of the second month "between the two evenings," they shall keep it, with unleave ened bread and bitter herbe they shall eat." In othor places, the command aimply readei "In the fourteenth dey is the Lord's passover" (Leroe23:5; Num. 28:16). But in no text, in either the Bible, Fhilo, or Josephus, is it statm od that the passover was "kept" or observed on any other date. In this reanat the enciant aurala of Anetaliue difforad from those of the latin furise.

Insert --- 1

31 In Bella Jud.VI.IX.3, Josophus speaks of the "ninth hour to the eloverin" as the time when "they saorifice" (thuousin) at the feast oalled passover. This period was, of course, ben ha-ahbayim; but in this text it has not iven given a Jewish date. Those who try to find ovidence for the afternoon of the Jewish "fourteenth," are opposed by the dated pascover desoriptions which Josephus wrote twenty years later in "Antiquitios," as for exomple, Ant.II.XIV.6; III.X.5; II.IV.8. The Greek construotion in theso citations makes it very plain that the passover lanb was slain, eaten, and tho romnants burnod--all on one day, the fourteenth of Nisan.
some, the father of chronology, and one who was readily faxiliar with all the oycles of early Christianity, reaches the following conclusions
"For without any controversy, Christ ate the passover when the thirteenth of Misan was onding, and the fourteonth beginning: that is, in the evening whioh the fourteenth of Nisan followed. Conoerning this no one, even a little erudite doubts. For, after sunset of the fifth day of the week, the Jowish sixth day was ontering, oven to sunset of the day of Vonue [Friday], after which the Sabbath oame on, even the fifteonth of Nisan, the soleam foast. Hence the whole fourteenth of Nisan intervened between the Lord's supper and the beginning of the solemn pasohale" [Feast of unleavened bread]. 29

The OT offers other convincing proof that both lanb sacrifioe and paschal supper belonged to one and the ame Jewish day. There ars altogether seven different passovers in the OT, and these are desoribed as being oither "killed," "eaten," or "kept"--in each oase on the fourteenth dey of the first detailed month. ${ }^{30}$ Now it should be clear that such adescription involves the wiole passover service-not merely the offering of the lamb. To "keep" the passover, as outlined in Exodus 12, meant to slay the lamb, roast it, eat it, and burn the remnants of the foast, and these acte are all inoluded in the seven texts--all on one date! Moreover, five of these passovers are mentioned as "kopt" on the fourtoenth.

In Num.9:11, the Hebrew text is very explicit: "In the fourteenth dey of the seoond month "between the two evenings," they shall keep it, with unleavened bread and bitter herbe they shall eat." In other places, the command simply reads: "In the fourteenth dey is the Lord's passover" (Lev.23:5; Num. 28:16). But in no text, in either the Bible, Fhilo, or Josephus, is it stated that the passover was "kept" or observed on any other date. In this respeat, the ancient oycle of Anatolius differed from those of the Latin jurisdiotion.

And those who favor the slaying of the national paschal sacifice "between the two everinga, late on oruoifixion Fridey, thus thinking to have the typ-

29 Scaliger, Joseph, "Do Emendatione Temporm," p. 8 of prefece. Francofurt, 1593.
$30{ }^{\text {"Killed" }}=\mathrm{Ex} .12: 6$, 2 Chron. 30:15, and 2 Chron. $35: 1$; "kept" and "eaten" $=$ Num.9:11; "kept" $=$ Num.9:3, Josh.5:10, and Exra 6:19.

Loal lamb slain simultancousiy with the death of Christ, not only thereby fail to fulfil the type, but the argument also faile of coinoiding with the astual oruoifizion date. For a paschal secrifice during the hours of ben has drberin on Friday afternoon, oven two hours before aunset, would obviously have ocourred after the death of Christs and in addition, in harnony with the calendaric eignificanoe of this pentateuchal period, would indisputably have been dated on the next dey se Sabbath the fifteonth. In other words, the typioal lamb would have been slain too late to profigure the death of the lamb of God on the fourteenth of Nisan.

The detailed desoription of the temple servioe onsoted at the very mement of the death of Jesus, as given in the "Desire of Agen," is indeed signifioants
"It was the hour of the ovening umorifloe. The Ismb representing Christ had been brought to be slain. . . With intense interest the people wore looking one. But the earth trembles and quakes: for the Lord Himself dremen nar. .
"All is terror and confusion. The priest is about to slay the Flotimy but the knife drope from his nerveloss hand, and the lanb escapes." 52

It is not the passover lamb that esoapes when the true Lamb dies--but the sacrificial lab of the evoning burnt offoring. The hour of the ovening sa0rifice has just bogun, and the lamb was to have boon slain by the teaple priest. If It had bean the paschal lamb, the hour would have been later, and the ameriflees would have beon miain by the people.

A paschal seorifice in the afternoon of oruolfixion Friduy is meaningless, for it offers ohromology point of tine other than the OT prediots, and othor than Jesus Himself pointed out according to His onn paschal supper. The only way that the probiem can be hasmonized is the Spirit-of-propheoy way-a passover sacrifice and supper at the evening beginning of death Fridey as the fourteonth of Mism. By this pian, the anoient passover Im and the astrom nomical Imin governing both now and full moon are brought into agreement with

82 White, E.C., "Desire of Ages," p. 756. Confliot of the Ages Serias.

Word "Passover" - 8
the little Hebrew period translated "between the two evening a*"
CONCLUSION

Moses mentions bon hemarbeyim in nine different texts. Ho maris its pow diurnal sition by burning 1 mmp , smoking incense, and setting sun. Within this land-. marls of time the paschal lamb is slain, and the sacrifice obviously must be dated with the setting sun. On whatever Jewish date the sun sets, that dey is part, and hence the ensuing day is therefore the passover date The questron hes been walked from very early times, "Did Josue anticipate the passover?" The mower in that not only Jesus and the disciples, but the whole Jewish nom tron kept that passover at the only possible ben hamirbsyin that could coincide With the date of His death. ${ }^{38}$

35 Cf. Anglicen Theological Review, Vol. XXY, No. 4. October, 1943.
give $11,194^{3}$

Jorusalem Civil Time
RELATION OF PASSOVER TO FULL MOON
A.D.
rusalem Civil
(Asterlisk [*] marixa the after-sunsot fullf fodons)

If the passover be dated on the day of full moon, as some insist, discordance with the conjunction date rem sults. For example: in case the phasis takes place at sunset of April 1, as in 13 A.D., then the civil date of 14 Nisan would be April 15, and the difference, as always, would be li days. In other words, the oivil date of the passover is the 14 th day after the civil date of the phasis. But frequently, as in the years 10 and 27 , or 18 and 19, the waring period of the moon is but little more or less than 14 days. Therefore, if a calendar places the passover on the day of full moon, the phasis would often oocur on the same day as conjunction $-\infty$ astronomical event that practically never happens. Hence discord would result between the laws of astronomy and the calendar. Consequently, the misplacing of the passover on the day of full moon, instead of after it, interferes with the laws governing the moon's phasis.

In this brief analysis of crucifixion chronology, the problem will be discussed in three parts:
I. Important Scripture Checks Relating to the Crucifixion Date. II. The Lord's Passover--a National Feast.
III. 31 A. D.--the Only Possible Death Year of Christ according to LuniSolar Calculation.

I. IMPORTANT SCRIPTURE CHECKS RELATING TO THE CRUCIFIXION DATE

The outline of the gospel narrative is obviously indispensable to the investigation of crucifixion reckoning. But even so, from Biblical sources alone, no generally accepted date for the death of Christ has as yet been demonstrated. No irrefutable calendar has been the answer to faithful research into the annals of early centuries. The principal reason for this outstanding lack of agreement among scholars of today seems primarily connected with the critical examination of the Bible text. Consequently, the crucifixion time argument here presented is lar\&ely based upon astronomical and calendrical analysis. Nevertheless, there are important Scripture landmarks relating to the problem, without the recognition of which no valid solution can possibly be evolved. A few of these outstanding features make up the following series:

1. The ancient barley-harvest law, and its relation to primitive Jewish time.
2. Four passovers in the three-year public ministry of Christ.
3. The series of events during passion week.
4. Crucifixion Passover--a late season feast.
5. The Ancient Barley-Harvest Law. The Mosaic law commanded Israel that a handful of the firstfruits of the land was to be presented to the priest for an offering at passover time before any bread, parched corn, or green ears should be eaten by the people. These limits were from April 8 to May 6 (Scaliger.) It was to be a statute forever throughout their generations in all their dwellings. (Lev. 23:10-14.) By this means the ancient

Jewish year was regulated, and the full moon of barley harvest marked the first month of the year. The original name for the Jewish first month of the year was Abib, signifying new fruits or "green ears." (Deut. 16:1.) Consequently, the sickle became the sign of the paschal season. (Bucherius.) 1 Around Jerusalem, the earliest ripe barley occurs in April, and the harvest itself lasts until about June 1.

From this ancient barley-harvest law, as set forth in Leviticus, it is conclusive that the original Jewish passover did not occur so early as Narch. And furthermore, it was not necessary for primitive Jewish reckoning to employ a cycle in determining the first month of the year so long as the passover could be governed by the moon of barley harvest. This is doubtless an important reason why the intercalary year as such is not mentioned in the Bible. But after the fall of the second temple (70 A.D.), the scattered and persecuted Jews had ultimately to follow the dictates of the Roman state, and also of the Church, who (a) based her feasts upon the Narch-passover cycle of Diony3
sius Exigius, and (b) insisted that Jews and Christians alike should not keep 4 the paschal feast at the same time.

Inasmuch as the apostatizing Church chose the passover of the resurrection as a basis for her feasts, placing Easter on the first Sunday following the equinoctial full moon, the Jews had no alternative but to take the first full moon after the vernal equinox as their paschal season. As a result, the Jewish constant calendar, from the fourth century onward, had many Narch passovers. The passover of the modern Jewish calendar occurs less frequently in larch because its moons fall five or six days later than did the corresponding moons of early century cycles. This is caused by the fact that about every 300 years the moon advances a whole day ahead of the Julian calendar. The accompanying diagram outlines the limits of the paschal full
1michaelis, Joanne Davide, "De Hensibus Hebraeorum Commentatio," Sections II $^{\text {M }}$ and III. Bremae, 1763.
$2_{\text {Note: }}$ Inasmuch as Ezra numbers his months, the month Adar mentioned in ch. 6: 15 is suggestive of intercalation--in other words signifying Adar Sheni. 3Scaliger, Joseph, "De Emendatione Temporum," p. 107. Francoरिurt, Thy ${ }^{\circ}$. He says: "Yet those ancients, when they used this cycle [that of Dionysius] thought that they were celebrating the passover in Nisan, which was Adar [March] in the years 2,3,4,7,10,12,13,15,16,18, as the table shows. . ."
moon date according to the ancient Mosaic law, and the law goverming the moderm Rabbinical calendar.

PASCHAL SEASON IN FIRST CENTURY

The barley-harvest law, when applied to a continuous series of years, works the same as the law of the 19-year cycle. The moon dates repeat within a day every 19 years. The embolismic years follow the same cycle number indefinitely, and the cycle years can begin from any point in the series. In TABLE I, the Veadar years are marked with an asterisk, and the remaining years are common (c). If the se symbols be set down in order, they will run as follows:
*cco*cc*cc*c*cc*cc*c
19 years
This order of common and Veadar years never changes in Jewish time, and the embolismic month is always in the spring. In ancient Babylonian reckoning, according to the cuneiform tables, the embolismic month alternates between spring and fall.
4 Migne, J. P., "Patrologiae Cursus Completus," S. L. t. LXVII, col. 953, can. 69; col. 959, canons 185, 186. (Ferrandi, "Breviatio Canonum".) Paris, 1848.

2a. The Four Passovers. There are two vital features that are set forth in this analysis as essential to the outline of Christ's public ministry:
(a) that it involved four passovers, though not of course a period of four 5
full years; and (b) that the four passovers are checked off by epochs in the life of John the Baptist. These two particular marks of distinction not only tie together the whole ministry of Christ, but they also bring harmony between the records of the Synoptists and that of the Fourth Evangelist.

FEAST OUTLINE OF THE PUBLIC MINISTRY OF CHRIST

Years
0.5^{-}

Winter -- Feast of Dedication--another attempt to stone Jesus FOURTH YEAR (beginning)

Spring-- Crucifixion Passover
3.5 years Total

The argument upon which the foregoing passover outline is based is as

Crucifixion Date -- 5

follows:
The chronology that singles out in the Synoptic gospels an additional barley harvest season, not belonging to any of John's passovers, is based upon one event -- the imprisomment of John the Baptist. Consequently, inasmuch 16 as the first passover occurred before John was put into prison, in 28 A.D., and Jesus did not begin public teaching in Galilee until after the imprison17
ment of John, the ears-of-corn Sabbath, mentioned by all the Synoptists, and introduced into the Synoptic outline soon after the return of Jesus into Galilee, must have marked a passover during the imprisonment of John the Baptist. Therefore, this incident of the barley harvest, which each of the Synoptists mentions, could not have belonged either to the first passover, while John was baptizing near Jordan, nor to the passover in John 6, which 18 came after John's death, at the tine of the feeding of the five thousand. Hence it must have been coincident with a paschal season during the period while John was in prison. In this manner, Natthew, Mark, and Luke introduce another passover, not referred to by the Fourth Evangelist, making altogether four passovers belonging to the public ministry of Christ. This Synoptic passover must therefore have occurred in the spring of 29 A.D. It can be designated the second passover.
20. Passover Near Time of Feeding the Five Thousand. Jesus did not attend this, His third public passover. He was in Galilee at the time. There are those who read only "feast of the Jews," in John 6:4, because of a possible original relation of the Fourth Gospel to Aramaic, which omits the word
"passover" in this text.
But this interpretation drops out a whole year from the public ministry of Christ. However, all three of the Synoptists describe the feeding of the five thousand, which is strictly associated with this "feast of the Jews," and by comparing their records, the chromology of the passover feasts can be established. In the authorized version, and in the American Revised, John's words are direct to the point that "the passover, the feast of the Jews was nigh." And, as if in further confirmation of this circumstance, he states that there "was much grass in the plaoe," where the people sat down to eat (verse 10). Lark adds that the grass was 20 green. This descriptive detail of that desert in Galilee is not only signi21
ficant, but highly so because it was a desert place.
In Palestine, during the summer, "the plains are parched with drought, and every green herb is dried up . . . no green thing remains but the foliage of the scattered fruit trees, and occasional vineyards and fields of millet." But following the rainy season, there are "rich and juicy pasturages." The very fact that the grass was green, and that there was much of it is indicative of the season that had preceded John's narrative. It had rained sufficiently for the grass to spring up abundantly. The passover always followed just such a period of rain -- designated the "latter rain."

But in marked contrast to the time of the feeding of the five thousand, which followed a period of rain, the feeding of the four thousand, the context shows, came a little later in the same year during the customary summer drought.

[^11]This miracle also took place in a desert, or wilderness, near a mountain 24
in Galilee, like the first feeding. But in this second instance, the people had to "sit dom on the ground" to eat their supper of bread and fish. Mark does not speak of any "green" grass, as he mentioned in the case of the five thousand -- he simply calls it ground, from the Greek gē, meaning 25
earth or land. Evidently, this later feeding cane during the summer, when every where in Syria the grass dries up. And that this incident occurred during the summer dry weather, can also be concluded from the fact that these heathen people had been with Jesus for three days, and must therefore have 26
slept out on the heath for at least two nights in succession.
These two feeding miracles--the one of five thousand Galilean Jews, after the rainy season, and the other later one of four thousand Galilean heathen from around Decapolis, during the summer dry season -- precisely locate John's "feast of the Jews" in his sixth chapter, even if we allow that the Aramaic omits the word "passover" from the text. For it could not have been other than the paschal season when the five thousand were fed, because of the abundant green grass in a desert place; and the feeding of the four thousand that followed later had to occur during the warm, dry weather of summer, when people and children could sleep out of doors. These two miracles could not be consistently related to any other seasons of the Jewish year. There is, accordingly, no alternative but to conclude that John's thirdmentioned feast is the third passover in the public ministry of Christ. The fourth is, of course, that of the crucifixion.

These four passovers signify that the actual public ministry of Christ
involved a period of about three years, and this fact is implied in the parable, where Jesus said to the dresser of His vineyard, "Behold, these three 27
years I come seeking fruit on this fig tree."
3. The Events of Passion Week. They all point toward the sunset beginning of a l4-Nisan passover day.

PASSION WEEK

Friday (14 Nisan) -- Day of the crucifixion. 55 morning

When John said, "Then Jesus six days before the passover came to Bethany;"

FOOTNOTES

27
Luke 13:7
${ }^{28}$ John 12:1
29John 12:2
30 John 12:12; Mark 11:2-7
$31_{\text {Mark 11: }} 11$
$32_{\text {Ibid. }}$
$33_{\text {Mark }} 11: 12-14$
34
$35_{\text {Matt. }}$ 21:15
36
Matt. 21:14
$37_{\text {wiark }} 11: 19$
${ }^{38}$ Ex. 12:3
39 Miark 11:20
${ }^{40}$ Matt. 22-24; Hark 12,13; Luke 20,21
$4^{\mathrm{Ma}+t}$. 25:1-13
42 Luke 21:37
${ }^{43}$ Natt. 26:2; Mark 14:1
$4_{\text {Luke }} 21: 38$
45 John 12:21
4^{4} John 12:28
47John 12:29,30
4^{4} John 12:36
49 Luke 22:1
50 Matt. 26:16; Mark 14:11; Luke 22:6
${ }^{51}$ Luke $22: 7$
${ }^{52}$ Natt. 26:17
$53_{\text {Wark }} 14$: 12
$5_{\text {John 13:1 }}$
55 Note: Should the Jewish passover be made to coincide with 15 Nisan, then the calendar phasis would frequently occur before the moon could possibly be seen.
and on Tuesday evening, while sitting on the kount of olives, Jesus Himself said, "Ye know that after two days the passover cometh" (Matt. 26:2 A.R.V.), these two statements go into the Bible record concerning the same point of time--the sunset beginning of the passover day. When this instant arrived in Jewry, Thursday had ended and Friday had begun. The portion of time between the Thursday evening sunset and the subsequent midnight was called the sixth day of the week by the Jews, and would be thus deted on their public documents. When the sun set, a new day had begun for the Jew. And when Luke says, "Then came the day of unleavened bread, when the passover must be killed" (Luke 22:7), the context shows that he referred to the Thursevening day $\mathrm{A}_{\mathrm{b}} \mathrm{ginning}$ of the new Jewish day. Obviously the point of time was sunset, when the new day began in Jewish communities. Consequently, Luke must have had Friday in mind as the day "when the passover must be killed."

Similarly, John, in his description of the Lord's Supper, says, "Now before the feast of the passover, when Jesus knew that His hour was come" (John 13:1). These words refer to the same occasion as those of Luke -the passover supper that was to be observed at the evening beginning of the sixth Jewish day, after the Thursday sun had set. By this order of feast observance; the harmony between john and the Synoptists is preserved.
4. Crucifixion Passover-a Late Season Feast. The outline of Christ's (page 4) is based upon seven specific Jewish feasts public ministry seasons in the four years indicated, and they tie together the ministry of Christ and the ministry of John the Baptist. But of importance also to our chronology is the fact that certain scripture references to these seasons intimate whether the corresponding years were common or intercalary. Necessarily, the year of greatest import is that of the crucifixion. If its Passover was unusually late, it is reasonable to expect some evidence in the Bible of the presence of the embolismic month Veadar. And there are several suggestive allusions to that effect: (a) the closed fishing season in John 21; and (b)
the state of vegetation at the time of the crucifixion Passover.
a. Tre have uniform testimony that the Galilean fishing season is from 56 mid-December or January to mid-April. Twice during the ministry of Christ, He performed a miracle in order to fill the disciples' nets with fish. The first occasion was in Galilee, after the Synoptic Passover. The Bible does not appear to state just how long after, but it is manifest that the season was late. In the very early spring before the crucifixion, Peter could readily hook up a fish off the shore of Galilee, "where the shallows swarin with small 57 fish-fry." The instance of the second miracle was in the y ar of the crucifixion, after the resurrection. Peter and his comrades had fished all night on the sea of Galilee, but had caught nothing. Then came the early morning catch at the command of their Naster. If the crucifixion had been early in April, then fishing would still have been good for a week or two. But the fact that it was not good in water that in season teems with large 58
fish a few yards out from shore, is indicative that the Passover was late-that is, after the fishing season had ended. Hence a Veadar spring.
b. In the highlands about Jerusalem at the tine of the death of Christ, 59 the "time of figs was not yet." And still, there was in this particular orchard to which the Synoptists refer, an isolated tree in full leaf, but without any figs. Nevertheless, in other orchards at this time, trees were

56 Dunkel; P. Franz, "Die Fistherei am See Gennesareth," p. 381. Biblica, Vol. 5, 1924. Rome; Masterman, Ernest V. Gurney, "Studies in Galilee," p. 38. Chicago, 1909; Rohricht, Reinhold, "Regesta Regni Hierosolymitani," p. 38. Libraria Academica Magneriana. 1893.
57 Nasterman, E. N.G., Idem.
58
Idem.
59
Mark 11:13
in leaf. But this special tree was barren, and it had been left from year to year with the expectation that it would, after more culture, bear fruit. However, it bore only pretentious foliage. But its green covering was so "luxuriant in appearance, and beautiful to the eye," that Jesus endowed the tree with a symbol, and to it likened the hypocrisy of the Jewish nation. 63
But in the crucifixion year, the paschal season was cold. The figs around Jerusalem had not yet matured, though leaves had. If the Passover had been in early April, it would still have been cold about Jerusalem, but the fig trees would not have been in leaf. From this very fact jesus drew a spiritual lesson:
"Behold the fig tree, and all the trees. When they now shoot forth, ye see and know of your own selves that summer is nownigh at hand." 64

Hence, the fig tree, with such abundant foliage, and the leafing out of other trees also, are witnesses to the lateness of the crucifixion Passover, and the nearness of summer. In early April, the fig trees of Southern Palestime have little green figs only--no leaves.

The Bible gives the following character to the Passover of the crucifixion:

1. It was the 14 th day of Nisan, as shown by all the Bible passovers.
2. It was also called the first day of unleavened bread.
3. It was the day on which the lamb had to be slain and eaten.
4. It was a one-day Passover.
5. It began at sundown on Thursday.
6. It was the fourth Passover of Christ's ministry.
7. It was a late season Passover.

It yet remains to demonstrate the nature and character of the Lord's supper in relation to the national feast.

Luke 21:30
61
Luke 13:9
62
"Desire of Ages," p. 583.
63
John 18:18
64
Luke 21:30

II. THE LORD'S PASSOVER--THE NATIONAL FEAST

At the time of the Egyptian passover, each Israelite home was invested, 65 as it were, "with the character and dignity of a temple," where the passover lamb was slain, and the blood sprinkled upon the entrance door. These lambs were not slain by a temple priest at a temple altar. But Philo (20 B.C. to 54 A.D.--a contemporary of Christ and the Apostles), makes revealing comment regarding the passover feast inthe time of Christ:
". . . on which festival not only do private individuals bring victims to the altar, and the priests sacrifice them, but also, by a particular ordinance of this law, the whole nation is consecrated and officiates in offering sacrifices; every separate individual on this occasion bringing forward and offering up with his own hands the sacrifice due on his own behalf." 66

Then again:
". . . on which pascha the whole nation sacrifices, each individual among them not waiting for the priests, since on this occasion, the law has given, for one especial day in every year, a priesthood to the whole nation, so that each private individual slays his own victim on this day." 67

Philo's words, "not waiting for the priests," are significant. They are highly suggestive that not every paschal lamb was sacrificed in the temple, and therefore, not all at the same time. That some "private individuals" did bring their lambs to the temple altar, according to Philo, is evident. 68 The occasion of the first passover after the dedication of the second temple, 69 and also Hezekiah's passover, are precedents. But, in the time of Christ, some lambs must certainly have been slain "without the gate" as a symbol 70 of Him who "suffered without the gate," And as a type of this was also the very first passover, when the lambs were slain at Israel's doors in Egypt. Liaimonides (12th century) casts more light on the whole question of "private altars." He admits that private altars had been permissible in early times, but that there had been an "edict" forbidding such. This is his com-

[^12]plete statement:
"Thus the paschal victim, like the rest of the sacrifices, was never slain, except in the court of the temple. But then, it was permitted that individual altars be kindled with individual sacrifices, although there was an edict that no paschal victim should be slain, upon a private altar. Thoever, therefore, had slain a paschal lamb upon a private altar, was compelled with stripes: because we see written in the law, 'Thou shalt not slay the pascha in any of your towns.' Deut. 16:5. For this doctrine has been handed down to us that, in this place, it is warned lest anyone should slay the passcver lamb upon a private altar, even though private altars were conceded."

The first day of unleavened bread had already come when Jesus said to 72
Peter and John, "Go and prepare us the passover that we may eat." They were outside of Jerusalem when Jesus said this. Possibly the lamb had even then been slain when the disciples asked, "Where wilt thou that we go and 73 prepare that thou mayest eat the passover," And, following in detail the Lord's instructions, the "disciples went forth, and came into the city, and 74 found as He had said unto them: and they made ready the passover." Jesus had said, "And he will show you a large upper room furnished and prepared: there make ready for us." And there the disciples did make ready. "And when the hour was some, He sat down, and the twelve apostles with Him."

In none of the evangelistic records is there any suggestion that Peter and John went up to the temple to slay the lamb. In the first place, sunset time was not the customary hour of the day for the temple passovers to be slain, at least according to the Mishna, which Maimonides cites. Secondly if it had been customary with Jesus to have their paschal lamb slain at the temple altar, Judas could have turned over this information to the priests, thus giving them opportunity to trail the disciples and arrest Jesus.

Josephus also supports the idea of private passover altars as a common practice at the time of Christ's birth. Both "Antiquities" and "Wars" give Tr . de Compiegne de veil. London, 1683.
$72_{\text {Luke } 22: 8}$
73 Mark 14:12
a record of a sedition that occurred among the Jews during the passover feast, shortly after the death of Herod the Great. Archelaus had assuned the throne in Judaea, although he had not yet been appointed by Augustus. The Jews lamented the death of Mathias, and those whom Herod had slain with him. An "innumerable multitude" had come up out of the country to keep the feast-one seditious group resorting to the temple for protection, while the masses were without the city in their tents, whom Josephus describes as offering sacm rifices "with great alacrity." 75

Against them, Archelaus sent a regiment of arged men, whom the Jews, with sacrifices in hand, stoned and wounded. "After which they betook themselves to their sacrifices, as if they had done no mischief." Finally, Archelaus "sent his whole army upon them, the footmen in great multitudes by way of the city [Jerusalem], and the horsemen by way of the plain, who, falling upon them on a sudden, as they were offering their sacrifices, destroyed about three thousand of them. " 77

In this season, the moon was full, and in that piercingly clear moonlight of the holy land, it was as easy for the army to attack by night as by day. But the important feature is that the Romans surprised the Jews, who were in the very act of offering thejr paschal lambs. Certainly this was not a temple service, and it is easy to see how, by this method, many lambs could be offered in a very short time!

The position taken in this argument is therefore that the gospel account supports a national Passover only--one that for the most part, in the crucifixion year, was observed on Thursday evening about sunset in the private homes and tents of the Jews. In further confirmation of this interpretation of the crucifixion Passover, attention is called to certain facts in the case:

[^13]a. The original Passover was a night ceremony only. It was a one-day service even in Josiah's time. 78 Consequently, the national sacrifice had always to be commemorative of that particular night in Egypt, when the destroying angel passed over the doors upon which had been sprinkled the blood. Therefore, to observe the sacrifice on parts of two days instead of in one night, would obviously destroy its spiritual significance. And, if $\frac{\text { a two- }}{\text { dat }}$ day ceremony had ever been possible, then the law in Numbers 9 would never need to have been given. 79
b. At the crucifixion Passover, both the typical lamb and the Antitypical Lamb were to be sacrificed. It is consistent that the calendar should date both events on one and the same day only--but not necessarily at the same hour. For it would be as reasonable to insist that the barley sheaf had to be waved in the temple at the same time Christ arose, as to maintain that the typical passover lamb must be slain at the same hour the True Lamb died. It seems sufficient that the two were sacrificed on the same day. But it annuls the meaning if the symbolic lamb is represented as being slain on one day, and the real Lamb on the day following.
c. On the occasion of the Egyptian Passover, the lamb was slain by the individual for the family group. But in later years, sometimes the levites substituted for people who were unclean. 80 Nevertheless, this was a substitute service only, for the king prayed, "The good Lord pardon every one."81 In the time of Christ, we read that many--not all--went up before the Passover "to purify themselves." 82 These were manifestly the heads of companies upon whom fell the office of slaying the lamb. It is therefore a logical conclusion that priest or Levite did not commonly slay the paschal lamb in the time of Christ.
d. It has been argued that, even though private passover altars be granted, the disciples would necessarily have to go to the temple sometime on Thursday, either to obtain their lamb, or to have the one selected examined by the priest. But it should be borne in mind that the paschal lambs had already been chosen since the l0th-on lionday-so that there was no necessity of waiting until the last few hours before the ceremony in order that the sacrificial lamb should be passed upon by the priest. Furthermore, it should be remembered that on that particular Thursday, Jesus and the disciples were in hiding outside of the city because of the activity of Judas in seeking to betray his Lord.
\dot{d}. But perhaps the most valuable witness to the view that John himself is describing the national festival, and not a private supper, is his own testimony that "before the feast of the passover," Jesus knew that His hour had come. Jesus knew from the prophecy in Daniel nine that the fourth Passa over in His public ministry would be His last. 83 But, if He anticipated the national feast upon which the prophecy was based, and subverted the time by a private paschal meal, not coincident with national observance, He could not possibly have insisted to His disciples that His "hour had come!"

[^14]John's important words are also repeated by Luke, and in harmony with their deep significance, it is a self-evident conclusion that all the Evangelists must have had only one Passover in view--the national feast.
III. THE ONLY POSSIBLE DEATH YEAR OF CHRIST ACCORDING TO LUNI-SOLAR CALCULATION

1. The Astronomical Principles Governing the Calendar Moon.

Surprising as it may seem, the foregoing Biblical principles, as discussed in Sections I and II, provide a calendar basis for crucifixion chronology. When Moses said that the Passover should be on the 14 th day of Nisan, he thereby exactly measured the paschal interval as 13 days between the moon's phasis and the sunset beginning of the Passover. And when astronomers, by actual observation, and by numerous uniform testimonies, covering a period of many centuries, report that the moon makes her first appearance in from one to four days after the conjunction date--which is the same as one to three days after the day itself of conjunction--they also measure the same paschal period to be 13 days long, in agreement with Moses. And these figures signify that on the meridian of Jerusalem, the paschal moon always fulled on 85 the 13 th day of Nisan, or on the day before the Passover. To this, Philo bore witness when he significantly described the Passover day "as full not by day only, but also by night of the most beautiful light!"

This coincidence between the full moon and the first month of the Jewish year in Jerusalem, does not necessarily occur in other months, nor on other meridians, when the moon may full earlier or later. And it makes all the more significant the synthesis that testifies to the fiand that controlled the order of the ancient Jewish feast period. In modern times, the question is asked:
"Tho is guiding the stars in their courses with such exactitude and with such scrupulous orderliness? Jupiter's oppositions to the sun occur once in 399 days. He never fails to be on time. . . Mercury's orbit is so inclined to that of the earth that his transits across the sun are relatively rare, but

[^15]on the average they number thirteen every hundred years, and they always occur in either Hay or November." 87

The same writer continues:
"Of all the arguments for the existence of God, there is none better than the one based upon the orderliness of the universe. It is shot through and through with the principles of mathematics. The science of numbers dominates everything that the world's Creator has done and is doing." 88

And furthermore, by the one simple command that marked out the 14 th of the first month as the passover day, Moses not only determined (1) the relation between the Passover and the full moon; but also (2) the timing of the ancient Jewish phasis; (3) the length of the ancient year; and (4) the length of the months that followed the Jewish feast period. These calendar details being fixed, it is obvious that the whole ancient system of time keeping was founded upon a calculation that agreed best with the observation of the moon. In other words, it was neither calculation alone, nor observation alone, but both together.

The Egyptian calendar was a sufficiently accurate measuring-stick of time for its age; nevertheless, it had not the exactness of the luni-solar system which Moses ordained. Horeover, the agricultural year of Moses had not the variations which would have characterized a calendar based wholly upon observation of the new moon. The Fosaic festivals appointed on certain days of the moon, all had a reference to the harvests of barley, wheat, and wine, respectively. It was field and land that determined Israel's calendar moon. To ascertain when intercalation was due, did not require observation of the "lesser light." This every farmer could decide by looking at the corn (grain) fields in southern Palestine.

And there were always just as many years as there were harvests; and one harvest could not fall over a month earlier or later than another similar $88 \frac{\text { Zion's Herald, August 27, 1941. Page 764. [Italics mine] }}{\text { Idem. }}$
harvest. By dividing the number of days in a period of lunar years by the number of harvests, the essential length of the solar year could be obtained; and the more numerous the harvests and the longer the period, the more exact the solar constant (Michaelis).

No single Jewish year taken by itself is a solar year, but is either
from 10 to 11 days shorter, or on account of an intercalated moon, 18 to than the solar year. 19 days longer, Moreover, there is no calendar cycle that precisely corresponds to the celestial motions of the moon. And Scaliger testifies that "long before the times of the Messiah, the Hebrews had in books the desig89 nated form of the year." He cites the Talmud for the statement that the ancients had a figure of the moon, or lunar cycle to which they resorted whenever "the clouds begrudged the eyes the vision of the new moon." Saadia Gaon, Albiruni, Raimonides, and Piniles make similar statements.

The outstending astronomical principles governing the calendar moon are:
a. From a moderńn standard almanac can be obtained an important calendar relation of the moon, that of course is as old as the earth and her parasite-the moon's perigee relation in the paschal month Nisan. Its importance never fails to be mentioned by those investigating the new moon. This lunar ratio, so useful in determining the position of the lunar phasis, can be nicely demonstrated from the ample figures of a modern standard almanac describing the moon's place in the sky. But, although we do not have such records for early centuries, yet our standard almanacs point out this perigee relation to the Nisan phasis, and reveal how the ratio can be applied to the ancient luni-solar calendar.

The ratio can be defined as an average relation between the moon's perigee, the translation period, and the waxing period. It is the perigee that

[^16]causes the varying relation botween these portions of tho moon's orbit, and back of that is Newton's law of gravitation between the carth and moon. The actual working of the perigee law is stated as follows:
"The time required for the moon to reach a given distance east of the sun dopends upon her distance from perigee at the time of conjunction. This angular distance is called the moon's anomaly. When the anomaly, plus or minus, is small, the waxing period is correspondingly short [See Fig. a]; when the anomaly is large, the waxing period is also long [See Fig. b].n ${ }^{91}$ fie following figuros illustrato this variation of the anomaly:

Therefore, by comparing the moon's waxing period, it is possible to determine how long the translation period should be. Tables II and III definitely show that tho one varios approximately as the other--that when the waxing period is long or short, the translation period must similarly be long or short. (Factor a)

Other factors governing tho Nisan now moon are the following:
b. Tho moon's phasis nover occurs on the civil date of conjunction.
c. Tho position of the phasis must be such as not to distort the length of the lunar year, making it too long, as 385 days, or too short, as 353 days.
d. There must always be 13 days between the civil date of the phasis, and the sunsct beginning of the passover on the Jerusalem meridion.
c. No two successive years should begin on the same day of the week, as would be tho case if the occasional fixed Jewish year of 385 days wero om-

[^17]ployed.
f. Paschal full moon--the first full moon after the equinoctial new moon.
g. Passover always on the day after the Jewish day of full moon--never on or before.
h. Tisri l counted as the 177th day after the Nisan new year.

The foregoing rules harmonize with the synchronizing dates of the Bible and related literature, as for example, the synchronism in the Sabbath feast of John 5:1, in which the year being known, and the day of the week, the 92 feast is proven to be that of Tabernacles.

2. Analysis of the Crucifixion Date

There are two rival dates set forth for the date of the death of Christ --30 and 31 A.D. All of the other years of Daniel's "seventieth-week" period fall out either because their passovers occur on some other day of the week than Friday, or else because the year is wholly out of season with the public ministry of Christ, as 34 A.D. And those who wish to make the crucifixion day coincide with the civil day of full moon, should pause to consider the following series:

PASCHAL FULL MOONS
(Jerusalem Civil Time)

D	Full Moon	Day of Meek	A.D.	Full Moon	Day
23*	Apr 24.53	Friday	32	Apr 14.47	Monday
24	Apr 12.86	wednesday-	33*	May 3.29	Sunday
25*	May 1.58	Tuesday	34	Apr 22.40	Thursday
26	Apr 20.60	Saturday	35	Apr 11.43	Monday
27	Apr 9.76	Wednesday	36*	Apr : 29.19	Sunday
28*	Apr 27:62	Tuesday	37	Apr 18.59	Thursday
29	Apr 17.21	Sunday	38	Apr 8.23	Tuesday
30	Apr 6.93	Thursday	39*	Apr 27.25	Monday
31*	Apr 25.94	Tednesday -	40	Apr 15.92	Friday
ers					

92 The year in John 5 is known because Christ had shortly before attended His first passover, passing through Samaria about four months before the autumn harvest. Jer. 41:1-8 shows that sometimes in Palestine the grain was sown in the spring, to be harvested later in the fall. The feast in John 5 could not have occurred in 29 A.D., for the Baptist was then in prison, while in this chapter, Jesus refers to him as a current witness. Calondar Proof: 1 Nisan in 28 A.D. equals April 15, Thursday (Cf. Table I) Hence 1 or 15 Tisri equals two days later in the week, or Sabbath. Therefore the Sabbath healing of the impotent man must have coincided either with the Feast of Trumpets on the Tisri new year, or with the Feast of Tabernacles on 15 Tisri.

In the foregoing series of years from 24 A.D. to 39 A.D. inclusive, no Julian civil date of full moon occurs on Friday. In the year 33 A.D., the full moon next earlier than May 3.29 was Friday, April 3.71, J.C.T. But this date was altogether too early for ripe barley in the vicinity of Jerusalem, and consequently, equally too early for this Passover in this year. And yet this is the popular date for those following the lead of the Rabbinical calendar. But, Nay 3.29 was the true paschal full moon in 33 A.D., as the 19-year cycle shows. Now obviously, if the ancient passover occurred on the civil day itself of full moon, as many insist, then in this 16 -year period, in which it is certain that Christ died, some one of these paschal full moon civil dates must of necessity have coincided with Friday. But in no year belonging to this period is there a synchronism between Friday and the civil date of full moon.

However, in this series, the Jewish days of full moon are the same as the civil except in the years $24,27,30,31$, and 40 ; when they are advanced one day because their full moons fall after sunset. Such a change results in a Jewish Friday full moon day in the year 30 A.D. But the year 30 A.D. could not have had a Friday passover for the following reasons:
a. A Friday passover in 30 A.D., on the basis of the date being 14 Nisan, would signify that the Jews in that year observed their passover before the moon actually fulled--contrary to the Mosaic plan. (lioon fulled on April 6, 10:30 p.mo)
b. A Friday passover on April 7, 30 A.D., makes the year 30-31 A.D. to be 385 days long, and causes both lunar years to begin on the same day of the wreek.-.-Saturday.
c. The year 30 A.D. was a common lunar year, as shown by the position of its full moon. Therefore this year as a crucifixion date, would not harmonize with the Bible demand for a Veadar year.
d. If 30 A.D. had been the crucifixion year, then the moons of the year 29 A.D. Yould heve to govern the Feast of Tabernacles in John 7, and the Sabbath healing of the blind man four days after the end of the feast. But the year 29 A.D. has no synchronism at all with the Feast of Tabernacles in the pre-crucifixion year, its moons coming on the wrong days of the week.
e. And finally, the Nisan conjunction in $30 \mathrm{~A} . \mathrm{D}$. was in the region of apogee, as has also been recognized by Fotheringhan and Schaumberger. There-
fore its translation period should be as long as possible, and not made shorter by one day. The actual passover in $30 \mathrm{~A} . \mathrm{D}$. was consequently on the Sabbath, April 8.
3. 31 A.D.--The True Crucifixion Year

Table "W" represents the seven-year period of Daniel's "seventieth week"--the period in the midst of which the sacrifice of Christ was to be made. All of these years fail of coinciding with a Friday passover except 31 and 34 A.D. But the year 34 A.D., because it came at the ond of the period, does not therefore belong to the prophetic "midst;" and it was also a common Jewish year. Thus 31 A.D. is the only year left to conform to the Biblical and astronomical domands with respect to tho crucifixion. Its Nisan translation is according to tho following diagram:

SUMMARY OF ARGUMENT FOR 31 A.D. CRUCIFIXION

Demand

1. Daniel's prophetic "midst of the week" -- first "week" of the prophecy being established by eclipses, Assuan synchronisms, and others in Ezra and Nehemiah.
2. Biblical demand for a Veadar year
3. Nisan conjunction in 31 A.D. was in region of apogee, calling for long translation period. 94
4. Moons of 30 A.D. must therefore agree with Feast of Tabernacles in pre-crucifixion year

Fulfilment
-- Year 31 A.D. is in exact middle of the "seventieth week" period

93
-- 31 A.D. is embolismic. -- In 31 A.D., Tr. Period $=3.19$ days Wax. Period $=15.36$ days (About the longest periods)
-- In 30 A.D., 1 Nisan = Sunday, Harch 25
Hence 15 and 22 Tisri $=$ Tuesday Blind man was therefore healed on Sabbath, on the fourth day after the end of the feasts in harmony with context in John 8 and 9

93

Note: From history also comes the confirmation that 31 A.D. was a Veadar year. In the year 1722, Thomas Shaw (Oxford) was travelling through the Holy Land. He noted that "barley, all over the Holy Land, was in full ear in the beginning of April [Julian Calerdar, Old Style]; and about the middle of the month [last of the month, New Style. England did not change her calendarbefore 1752.] It began to turn yellow, particularly in the solthern districts." Dr. Shaw also made note that the Boccores, or first ripe figs were hard, and no bigger than comion plums. He makes valuable comment upon these facts:
"According therefore to the quality of the season, in the year 1722, the first fruits could not have been offered at the time appointed; and would therefore have required the intercalating of Ve-adar, and the postponing thereby the passover for at least a month."--"Observations of Barbary and the Levant," p. 137. Edinburgh, 1808.

Dr. Shaw is therefore an eye-witness that the year 1722 demanded a Veadar month in Palestine. But between 1722 and 31 A.D. are 1691 years, or exactly 89 19-year cycles. Therefore, according to the law of embolism, since the year 1722 was embolismic, the year $31 \mathrm{~A} . \mathrm{D}$. must have been embolismic also. Thus we have the double witness of history and even nature herself to the barley-harvest law in its relation to the law of the 19-year cycle. This significant historical testimony is a telling argument with reference to the efficiency and accuracy of the Nosaic barley-harvest law. The principles of this regulation of the Jewish year were as potential in Palestine after three thousand years and more as when Moses ordained them. They are a faith94 lead to one of the vital features governing the crucifixion date. 94

The apogee positions of the moon in the years 30 and 31 A.D. were computed by Glen H. Draper, U. S. Naval Observatory, "ashington, D. C. (Photostat of this computation in the Advent Source Collection)

	Conjunction 1 Nisan	Day of			From Con.	
			(Days)		(Days)	$\frac{\text { ength }}{\text { (Days }}$
1*	Apr.12.49--Apr 14	Thur	1.28 Apr 26.40	Apr 27	13.91	
2	Apr 1.72--Apr 4	Tues	2.05 Apr 15.91	Apr 17	14.19	4
3*	Apr 20.41--Apr 23	Mon	2.36 may 4.90	May 6	14.49	4
4	Apr 8.44--Apr 11	Fri	2.33 Apr 23.62	Apr 24	15.18	
5	Mar 28.69--Apr 1	Wed	3.07 Apr 13.22	Apr 14	15.53	384
6*	Apr 16.60--Apr 20	Tues	3.17 May 2.09	May 3	15.49	354
7	Apr 6.25--Apr 9	Sat	2.52 Apr 21.31	Apr 22	15.06	354
8	Mar 25.96--Mar 28	Ted	1.80 Apr 9.33	Apr 10	14.37	354
9*	Apr 13.94--Apr 16	Tues	1.83 Apr 28.02	Apr 29	14.08	354
10	Apr 3.38--Apr 5	Sat	1.39 Apr 17.33	Apr 18	13.95	355
11	Mar 23.53--Mar 26	Thur	2.23 Apr 6.90	Apr 8	14.37	384
12*	Apr 10.23--Apr 13	Med	2.54 Apr 24.92	Apr 26	14.69	354
13	Mar 30.28--Apr 2	Sun	2.48 Apr 14.61	Apr 15	15.33	384
14*	Apr 18.09--Apr 21	Sat	2.68 May 3.58	nay 4	15.49	384
15	Apr 7.57--Apr 11	Thur	3.20 Apr 22.99	Apr 24	15.42	354
16	Mar 27.25--Mar 30	Mion	2.51 Apr 11.11	Apr 12	$\underline{11.86}$	384
17*	Apr 15.27--Apr 18	Sun	2.50 Apr 29.78	May 1	14.51	354
18	Apr 4.89--Apr 7	Thur	1.88 Apr 18.89	Apr 20	14.00	354
19	Mar 25.26--Miar 27	Mon	1.50 Apr 8.27	Apr 9	14.01	384
20*	Apr 12,00--Apr 14	Sun	1.77 Apr. 26.21	Apr 27	14.21	
21	Apr 1.03--Apr 4	Fri	2.73 Apr 15.92	Apr 17	14.89	
22*	Apr 19.74--Apr 23	Thur	3.03 Niay 4.93	Nay 6	15.19	354
23	Apr 9.00--Apr 12	Mon	2.77 Apr 24.53	Apr 25	15.53	355
24	Mar 28.55--Apr 1	Sat	3.21 Apr 12.86	Apr 14	15.31	383
c5*	Apr 16.57--Apr 19	Thur	2.20 May 1.58	May 2	15.01	354
26	Apr 6.28--Apr 8	Mion	1.49 Apr 20.60	Apr 21	14.32	355
27	Mar 26.83--Mar 29	Sat	1.93 Apr 9.76	Apr 11	13.93	383
28*	Apr 13.68--Apr 15	Thur	1.09 Apr 27.62	Apr 28	13.94	355
29	Apr 2.82--Apr 5	Tues	1.95 Apr 17.21	Apr 18	14.39	355
30	Mar 22.84--Mar 26	Sun	2.93 Apr 6.93	Apr 8	15.09	384
31*	Apr 10.58--Apr 14	Sat	3.19 Apr 25.94	Apr 27	15.36	354
32	Nar 29.95--Apr 2	Ted	2.81 Apr 14.47	Apr 15	15.52	384
33*	Apr 17.90--Apr 21	Tues	2.87 May 3.29	Nay 4	15.39	354
34	Apr 7.58--Apr 10	Sat	2.19 Apr 22.40	Adr 23	14.82	354
35	War 28.27-Mar 30	Fred	1.49 Apr 11.43	Apr 12	$14_{4 .} 16$	384
36*	Apr 15.21-*Apr 17	Tues	1.56 Apr 29.19	Apr 36	13.98	354
37	Apr 4.56-Apr 6	Sat	1.21 Apr 18.59	Apr 19	14.03	355
38	Niar 24.62--Mar 27	Thur	2.24 Apr 8.23	Apr 9	14.61	384
39*	Apr 12,31--Apr 15	med	2.46 Apr 27.25	Apr 28	14.94	
40	Nar 31.46-Apr 4	Mion	3.30 Apr 15.92	Apr 17	15.46	384
41*	Apr 19,35-Apr 23	Sun	3.44 Nay 4.85	Nay 6	15.52	354
42	Apr $8.37 \cdots \cdots \mathrm{Apr} 12$	Thur	2.90 Apr 24.15	Apr 25	15.28	354
43	Mar 29.56.-Apr 1	Mon	2.18 Apr 13.21	Apr 14	14.63	384
44*	Apr 16.60--Apr 19	Sun	2.17 Apr 30.90	lay 2	14.30	354
45	Apr 6.14--Apr 8	Thur	1.63 Apr 20.07	Apr 21	13.93	354
46	Mar 26.40--Mar 28	Nion	1.42 Apr 9.55	Apr 10	11.15	354
47*	Apr 14.11--Apr 16	Sun	1.66 Apr 28.54	Apr 29	14.43	355
48	Apr 2,ILL-*ipr 5	Fri	2.63 Apr 17.26	Apr 13	15.12	355
49	Mar 22.35-avar 26	wied	3.41 Apr 6.88	Apr 8	15.53	384
50*	Apr 10.25--Apr 14	Tues	3.52 Apr 25.77	Apr 27	15.52	354

[^18]| Iyar | Tammuz | | Elul | Hesvan | | Tebet Adar | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nisan S | Sivan | Ab | | Tisri | Kisl | eu | Shebat | Veadar |
| 1-1 | 11 | 1 | 1 | 11 | 11 | 1 | 11 | 1 |
| 22 | 22 | $2-$ | 2 | 2 | | 2 | 22 | 2 |
| 33 | 3 3- | 3 | 3 | 33 | 3 - | | 33 | 3 |
| 44 | 44 | 4 | 4 | 44 | 4- 4 | 4 | 44 | 4- |
| 55 | 5-5 | 5 | 5 | 55 | 5 | 5 | 5 | 4 |
| 6 6- | 66 | 6 | 6 | 6-6 | 6.6 | 6 | 6 | 6 |
| 77 | 77 | 7 | $7-$ | 77 | 7. 7 | 7 | 7-7 | 7 |
| 8-8 | 88 | 8 | | 88 | 8 | 8. | 7 | 8 |
| 99 | 99 | $9-$ | 9 | 99 | | 9 | 99 | 9 |
| 1010 | 10 10- | 10 | 10 | 1010 | 10- | 10 | 1010 | 10 |
| 1111 | 1111 | 11 | 11 | 11 11- | - 11 | 11 | 1111 | 11- |
| 1212 | 12-12 | 12 | 12 | 1212 | 12 | 12 | 1212 | - |
| 13 13- | 1313 | 13 | 13 | 13-13 | 13 | 13 | 1313 | 13 |
| 1414 | 1414 | 14 | $14-$ | 1414 | 14 | 14 | $14-14$ | 14 |
| 15-15 | $15 \quad 15$ | 15 | 15 | 1515 | 15 | 15- | 1515 | 15 |
| 1616 | $16 \quad 16$ | 16- | 16 | $16 \quad 16$ | 16 | 16 | 1616 | 16 |
| 1717 | 17 17- | 17 | 17 | 1717 | 17- | 17 | 1717 | 17 |
| $18 \quad 18$ | 1818 | 18 | 18 | 18 18 | - 18 | 18 | 1818 | $18-$ |
| 1919 | 19-19 | 19 | 19 | 1919 | 19 | 19 | 19 19- | 19 |
| 20 20- | 20. 20 | 20 | 20 | 20-20 | 20 | 20 | $20 \quad 20$ | 20 |
| 21 | 2121 | 21 | 21. | 2121 | 21 | 21 | 21-21 | 21 |
| 22-22 | 2222 | 22 | 22 | 2222 | 22 | 22- | $22 \quad 22$ | 22 |
| $23 \quad 23$ | $23 \quad 23$ | 23- | 23 | $23 \quad 23$ | 23 | 23 | $23 \quad 23$ | 23 |
| 2424 | 24 24- | 24 | 24 | 2424 | $24-$ | 24 | $24 \quad 24$ | 24 |
| 2525 | $25 \quad 25$ | 25 | 25 | 25 25- | - 25 | 25 | $25 \quad 25$ | 25- |
| $26 \quad 26$ | 26-26 | 26 | 26 | $26 \quad 26$ | 26 | 26 | 26 26- | - 26 |
| 27 27- | $27 \quad 27$ | 27 | 27 | 27-27 | 27 | 27 | $27 \quad 27$ | 27 |
| $28 \quad 28$ | $28 \quad 28$ | 28 | 28- | $28 \quad 28$ | 28 | 28 | 28-28 | 28 |
| 29-29 | 2929 | 29 | 29 | 2929 | 29 | 29- | 2929 | 29 |
| 30 | 30 | 30- | | 30 (30) | (30) | | 30 (30) | |

From Table II, the day of the wek is determined for any Jewish date. Hyphens mark the beginning of the week from the first day of Nisan. The first 235 days of the Jewish year -- to the end of Hesvan -- are always rekoned the same. In this period, the weeks never change their beginning day. Hence, upon whatever day of the week 1 Nisan falls, all the succeeding weeks to the last of Hesvan begin on the same week day. The 15 th day of each month, throughout the whole year, is always the same day of the week as the new moon day. These permanent calendar features make it possible easily to compute intervening dates between the marked weeks. If, for example, 1 Nisan is Tuesday, then every hyphened date for the first eight months is Tuesday; and 24 Elul, counting from Tuesday, 21 Elul, would be Friday.

1. In a 355 -day year, the weeks following Hesvan, which gains a day, begin a day later.
2. In embolismic years, the weeks in Veadar begin a day later than the weeks in Adar, to which has been added a day.
3. In a 383-day year, the weeks after Kisleu, which loses a day, and on to the end of Adar, begin a day earlier.
4. In a 354 -day year, the weeks begin on the same day of the week throughout.

The characteristic chronological period to which the crucifixion year must conform is set forth by the prophecy of Daniel, and is confirmed by well authenticated eclipses and synchronisms. The new moon's place in the heavens in the spring of two consecutive years--30 and 31 A.D. has been calculated according to the perigee formula of Brown's lunar tables, and the calendar moon found to be in harmony with her calculated position. The embolismic spring of 31 A.D. in Jerusalem is confirmed by observation at the end of 89 cycles from that point of time on the same meridian. All of these witnesses-prophecy, eclipse, papyrus roll, lunar calculation, and history--bear testimony that April 27, 31 A.D., and this date alone, fully meets all the demands with reference to the death year of Christ.

Prepared for the Class in the History of Prophetic Interpretation by Grace E. Amadon March 11, 1942

E. Translation of New Moon for Wisen.

1. The ilion's Motion. In order to understand any astronomical argument which may pertain to the crucifixion date, it is necessary to review the relation of the moon to the sun and earth. ${ }^{1}$ The path of the sun in the heavens is a great circle eflach called the ecliptic. A belt 8° wide on each side of the ecliptic is known as the zodiac. This particular width was chosen by the ancients because the paths of moon and all the principal planets keep within this belt, and it is therefore a very convenient circle of reference. And in reference to this, the longitude and latitude of a star is reckoned in degrees, minutes, and seconds.

About 800 years before Christ, the zodiac was divided into 12 parts called signs, at which time the signs were separated from the primitive constellations of the same name. Each sign is 30° in length. The signs lent the same names as the original constellations, all being named after some animal, with the exception of Libra. The ones frequently referred to in this discussion are Pisces, Aries, and Tau rus in the spring, and Virgo, Libra, and Scorpio in the autumn.

Another great circle in the heavens is the celestial equator, which is an imaginary projection on the sky of the equator of the earth. At two points 180° apart--known as the equinoxes--the path of the sun crosses the celestial equator. At those times day and night are_equal. When the earth is nearest the sun, as at perihelion (about December 37), her orbital motion is most rapid; and at aphelion, the opposite point of the ecliptic (about June 30), her motion is slowest. Any motion of the earth of course influences the moon's motion.

The moon travels around the earth every $291 / 2$ days, and in that same time passes up and down in its path through the zodiac belt. Sometimes he is north of the sun, sometimes south. (Her rate of travel through the zodiac is irregular, sometimes fast, sometimes slow, because of her distance from the sun and earth. When the moon is between the sun and earth, this position is called "conjunction," and the moon is new. At this time the moon cannot usually be seen for a period of
${ }^{1}$ The astronomical facts appearing here are found in any standard text on astronomy,
from 1 to about 4 days. ${ }^{2}$ when the earth is between the sun and moon, this relation is called "opposition," and the moon is full.

All of these facts and figures have a direct bearing upon the time it takes the moon to come into sight after conjunction, and they therefore take on a definite relation to the moon's changing rate of motion. From new moon to full moon, i.e. from conjunction to opposition, the moon travels through the first half of henthly circuit around the earth. This first half of the moon's. circuit was of great importance to the Jews, because of (1) their "new moon" feasts which were gauged by the conjunction and its at tendant phasis; (2) the passover sacrifice right after the opposition or full moon of ITisan; and (3) the three special days in the fall- dew Hoon Day of Tisri or Rosh. Hashanah, the Day of Atonement, and the Feast of Tabernaclesmwhich were connected with the new and full moon of Tisri. The true time of the moon in this period from conjunction to opposition runs in a cycle of 14 moons as follows: 3

TABLE IV
moon's changing rate of motion
(In a 14 Ioon Cycle)

Years in Cycle	Calendar Year	(1) New Moon	$\begin{aligned} & (2) \\ & \text { Full } \end{aligned}$Moon		(3) Period from New to Full Moon		Period juncti	4) from Conon to Phasis 4
1.	1930	Apr. $2819^{\text {h }}$		- May $1217^{\text {h }}$	$29^{m}-13{ }^{\text {d }} 22 \mathrm{~m}$	-	$\begin{array}{ll}\text { d } & h \\ 1 & 0\end{array}$	$\begin{aligned} & m \\ & 8 \\ & \hline \end{aligned}$
2.		May 285	36	Junc 116	$11--14035$	--	$1 \begin{array}{ll}1 & 14\end{array}$	24
3.		June 2613	46	July 1020	$1-814 \quad 615$	-	26	32
4.		July 2520	41	Aug. 910	$57-141416$	--	123	14
5.		Aug. 243	36	Sept. 82	$47-142311$	--	215	29
6.		Sept. 2211	41	Oct. 718	55-15 714	-	36	
7.		Oct. 2121	47	Nov. 610	28--15 1241	-	219	4
8.		Nov. 2010	21	Dec. 60	$39-151418$	-	35	43
9.		Dec. 201	23	Jan. 413	$14-151151$	--	$\begin{array}{ll}2 & 14\end{array}$	32
10.	1931	Jan. 1818	35	Feb. 30	$25-15550$	-	221	55
11.		Feb. 1713	10	Mar. 410.	$36-142126$	-	24	
12.		Mar. 197	50	Apr. 220	$5-141215$	-	210	23
13.		Apr. 180	59	May 25	$14-14415$	--	118	1
14.		May 1715	27	May 3114	$33-1323 \cdot 6$	--	14	17

Hevelius, "Selenographia," P. 273; Note: Very seldom, according to Hevelius, does the phasis occur on the same day as conjunction. This research found two times in which phasis and conjunction coincided (on the sde day); Oct. 13, 1844 (Boston): Sept. 19, 1933 (Greenwich). next full moon date.

In a cycle of 14 lunar months, in Table $I V$, the period of time in days, hours, and minutes in column 3--"Period from New to Full Moon"-represents the actual time it takes the moon to go from new moon to full moon. In this cycle, fhe travels her half circuit around the earth from high accelerated velocity ($13^{\text {d }} 22^{h} 21^{m}$), to slow $\left(15^{\mathrm{d}} 14^{\mathrm{h}} 18^{\mathrm{m}}\right.$), and back again to high. In 14 rounds sho completes her cycle, which represents the moon's varying motion. 5 From age to age, in saecula saeclorum, sho has kept up this l4-moon cycle, the periods varying slightly each moon, or month.

The Transiation Cycle, under column 4 , represents the actual time in days, hourg and minutes it takes the moon to go from conjunction, when she cannot be seen, to her phasis, or first appearance. The phasis always marked the sunset beginning of each new month for the nations using the luni-solar year. These translation periods also run in a l4-moon cycle, which follows fairly closely the longer waves of the moor from conjunction to opposition. When the moon is slow, then the translation period is long-over 3 days; when the moon is fast, herf translation is short, usually a little over 1 day. The following Diagram C shows how closely these two cycles correspond:

5
Diagram C represents but a small portion of a large lunar sine curve covering over 20 years, in which the Translation Cycle was figured according to Postulate I, Table V, and the full moon cycle as in Table IV. Both curves keep the same defined relation throughout, showing the influence of the same lunar motion upon each curve.

In the phasis curve, we see the combined result of all the causes which conspire to hasten or retard the visibility of the nascent moon. Fotheringham names three causes as affecting the first appearance of the new moon: ${ }^{6}$ (1) Longitude;
(2) Latitude; (3) Anomaly, or the moon's angular distance from perigee. The longitude refers to the moon's distance from the vernal equinox, as measured on the ecliptic, and the latitude to her position in the $2 p$ diac, north or south of the ecliptic. Maimonides also gives these same three factors, summing them up into one conclusion-w that "knowing the positions of the sun, the moon, and the moon's node, respectively, you have all necessary elements to establish by calculation whether the new moon will be visible or not. ${ }^{17}$

Hevelius has also left on record a complete description of the new moon and her phasis. He likewi se presents the same three causes, though differently described, which result in the moon's visibility, early or late: (1) The obliquity of the

6 Fotheringham, "Date of the Crucifixion," Journal of Philology (NXIX), 57. London, 1903, p. 105.
7 Maimonides, quoted by Sider sky, "Chronology of the Jews," p. 668.
sphere leading to long or short settings; (2) the position of the conjunction, whether it is near the northern part of the zodiac or not; and (3) the relation of the moon to perigee; that is, her anomaly. ${ }^{8}$ He names Pisces, Aries, and Taurus as being signs of long settings, and Virgo, Libra, and Scorpio as signs of short settings.

Ferguson also testified the same when he said that the "ecliptic sets slowest in Aries, and fastest in Libra,"9 a similar statement from Ferguson being printed in the Midnight Cry. ${ }^{10}$ (Ve shall see this contrasting relation of the moon to the se opposing signsffaries and Libra-work out exactly as specified by astronomy in the event of the crucifixion and the October 22 date in 184. ${ }^{2}$) Hevelius further shows how these various causes or factors conform to the moon's motion:
"But if the causes mentioned as advancing the quick coming forth of the moon, do not always conspire, but even one is lacking, then on the next day after the interlunary period, this first phasis at length appears: but with two requisite causes absent, it can happen that finally the first phasis of the moon may fall in sight on the third day. But with all three conditions deficient, accelerating the rising of the moon. . Then this first appearance of the moon finally hep pens on the fourth day after conjunction with the sun. "ll [Italics mine.]

Then Hevelius adds the important observation that the "three requisite causes [for a quick phasis], as now told, commonly very rarely appear, so that the moon is in the signs of long settings [as in Aries], in perigee, and in the northern border, plainly in the time of conjunction or phasis."12 Equally important is still another citation from the same paragraph that the same rising of the moon does not commonly happen on the first day after the interlunary period [or. translation], but at length, on the second, often also on the third and fourth; this is plain to all observing her."

In harmony with this last statement, Scaliger shows that the Jews took a later moment for the moon's phasis:

```
    \({ }_{9}^{8}\) Hevelius, op. cit., pp. 274, 275.
    9 Ferguson, op. cit., p. 244.
    10 Midnight Cry, Apr. 20, 184, p. 19.
    11 Hevelius, op. cit., pp. 274, 275.
    12 Hevelius, op.cit., p. 276. .
```

"But the Jewish, Arabic, and Samaritan new moons usually exceed the size of the phesis [that is, the first slender streak of the moon] so that the civil new moons of the lunar months are of a triple kind: the Attic, as from conjunction; the Calippic from the waning of the moon; and the Jews, Samaritans, and Arabs from the 'shape' of the moon, from the third day, I say. "13

With these two authorities on the moon's phasis, both Geminus in the first century B.C., and Hales in the 19 th century, agree. 14_{4}

The three causes of an early or late phasis, as given in the foregoing citations, have all entered into the visibility test for the first appearance of the moon after conjunction as outlined by those recently studying the computation of time in the first century. ${ }^{15}$ But it is noticeable that in the results given, though many moons have been observed, a translation period extending to the 3 rd or 4 th day after conjunction is seldom seen. Usually the results are from 1 to 2 days-and thus are contrary to the testimony of Hevelius, Geminus, Scaliger, and Hales. The phasis often appears in the modern Jewish calendar even on the day of conjunction. 16 Questions have already arisen as to the validity of these visibility tests. 17

One question yet remains to be answered: "On what day of Misan shall we place the full moon dates belongiag to the years of Christ's ministry? The following table represents the new and full moons of the years 28 to 33 A.D., which embrace all the years within which the ministry of Christ is usually located. 18

Scaliger, "De Emendatione Temporum," pp. 6, 105. Scaliger also emphasizes the "horned moon" as characteristic of the Hebrew phasis (p.). Hevelius dovotos a wholo ohaptor to tho "horned noon"-an older crescent shape--and shows how such a phasis is identified (pp. 281-284).
Hales quotes as follows from Geminus: "Geminus, a Grecian astronomer says, 'that when the moon is in perigee, and her motion quickest, she does not usually appear until the second day, nor in apogee when slowest, until the fourth.'" ("New Analysis of Chronology," Vol. 1, London, 1830, p. 67.) calendar has an interval of 48 hours, or more, betwreen conjunction and phasis, and provides for one or two days additional by its system of postponements, "the purpose of which is to retard by one or two days the official new moons." (Sidersky, op. cit., p. 64.) Thus the Jewish reckoning recognizes the full translation period as demanded by astronomy and history. Dayrich, E., "The Death of Jesus of Nazareth," Astronomical News, Vol. 24,1, May, 1932. Note: Dittrich observes that the calendar and the position of of the moon do not agree in these tests.
The spring of 27 A. D. does not come into this list, because the baptism took place in the fall of the year. The dates in Diagram D were computed from Schram's tables by Associate Astronomer Glen Draper of the U.S. Naval Observatory Washington, "D.C., leading computer of the "American Ephemeris and

Part V--Crucifixion Date--38.
DIAGRAIf D

As shown in part V. Sec. A, it makes a fundamental difference on what day of ijisan the full moon is placed. Throughout early patristic writings, the passover day is repeatedly called Luna 14 , that is, the \mathbb{H}_{4} th day of the moon, 19 and it is clear from Ioses 20 that this was also Abib (or Nisan) 14. Therefore, inasmuch as the extreme limits of the full moon cycle, in Table IV, extend from $13^{d} 22^{h} 21^{m}$ to $15^{\mathrm{d}} 14^{\mathrm{h}} 18^{\mathrm{m}}, 21$ and because the translation period itself, according to history, uses up from 1 to 3 full days, and some over, it would be impossible for the full moon to fall on any other than Nisan 13, and harmonize with the se periods. If 1 day is taken from $13^{\text {d }} 22^{h} 21^{m}$ (the shortest period), the remainder coincides with Nisan 13; in like manner if 3 days are taken from the longest period, Nisan 13 is again proven.

In harmony with this, we have the testimony of Geminus, who definitely states that the earliest full moon comes on the 13 th of the Iunar month. ${ }^{22}$ Aristobulos also maintained that the "day of the paschal festival began on the 14th of Nisan, after the evening when the moon stands diametrically opposed to the sun, as everyone can see at the time of full moon." 23

The Arabs had special names for each series of three nights of every month, which were derived from the state of the moon and her light. The fifth three nights

19 Clavius, "Romani Cal endarii Restituti Explicatio," p. 63.
20 Ex. 12:2.
21 Table IV.
22 Geminus, op. cit., p. 129.
23 Caspari, C.E. "Introduction to the Life of Christ" (trans. by Evans), Edinburgh, 1876, p. 9; Eusebius, "Ecclesiastical History," bk. VII, ch.XXXII.
(13-15) were called bid, because they were white by the light of the moon. The night between 13 and 14 is called badr, because in it the moon is full, and her light complete. ${ }^{2 / 4}$
2. Calculation of Nioon's Phasise According to ancient practice, and in harmony also with later testimony, the full moon is marked on the day of Misan 13, as in Table IV, and the days are numbered back to Nisan 1. If the moon fulls between sunset and midnight, the full moon dates are placed early on the 13 th of Nisan, between sunset and midnight "How notice the year 33 A.D., in connection with the Table V, Postulate I. The full moon time was April 3, $17^{\mathrm{h}} 27^{\mathrm{m}}$ J.C.T. (Jerusalem Civil Time), on Friday. This means 5:27 P.M., Friday, April 3. The place of the moon is therefore marked near the sunset on that day, calling it iNisan 13. Then count back by common calendar days to Thursday, harch 19, on the 13 th hour of which is conjunction. iNumber the days forward to Nisan 1, which is Sunday. From the 13 th hour on March 19 to the sunset beginning of Nisan J. is the period from conjunction to phasis, known as the "translation period."25 A glance shows this to be two whole days and a few hours over.

From the ilautical Almanac, the sunset time for harch 21 is found, which coincides with the beginning of Misan 1. This is 6:10 P_{0}. 26 From the 13 th hour on March 19 to sunset et 6:10, beginning iNisan 1, are $2^{d} 4^{h} 56^{m}$ for the translation period of Nisan 1, in the year 33 A.D. This means that the full moon date in the year 33 A.D. was on Friday, Nisan 13, and that the passover day fell on Nisan 14, Saturday, April 4. . Fotheringham also agrees with April 4, Saturday, as being the passover in 33 A.D. 27 The real error in Fotheringham's Table consists in the fact that his passovers in the years $28,29,31$, and 33 are a month too early. On the other hand, a full moon as -
24 Albîrûní, op. cit., pp. 6, 75.
$26 \frac{0 p_{0}}{\text { The }} \frac{\text { cit., }}{\operatorname{sem}} \overline{p_{0}} 144_{0}$
The same sunset table for every year can be used because the longitude of the sun is marked from a fixed point on the ecliptic--the vernal equinox-which does not change.
27 Op. cit., p. 107.
early as April 3 could not be a barley-harvest moon in Judaea, and is therefore too early for the passover feast. A moon later places the passover in 33 A.D. on Sunday.

The same manner of figuring is operative for 30 A.D. The full moon date is after sunset of April 6, which in Jewish time is Friday, and which we must call Nisan 13 according to Poltulate 1. Saturday then becomes the Passover, on Fisan 14. So then the year 30 A. D. falls out, because Friday is Nisan 13 and not 14.28 in that year. The yeors 32,29 and 28 likewise fall out, because their passovers are on Tuesday, Monday, and wednesday, respectively. And the year 33 A.D. is out, because Friday is Hisan 13.29 This then leaves 31 A.D. as the only year within the period of Christ's public ministry with a passover on Friday. It came on April 27, Nisan 14-meeting all the requisite factors.

The translation period of the moon has been described again and again all through the Christion era, especially by the Jewish chronologists. Hevelius puts it this way:
"Quomodo vero haec observatio fuerit instituta, Rabbini eorum, \& ex iis recentiores chronologi, abunde tradunt." (How this phasis [or observation] should be established, their Rabbins and their more recent chronologers abundantly report.) 30 [Italics mine.]

Possibly Hevelius was referring particularly to deimonides, who lived in the early 13 th century, 31 and worked out by spherical trigonometry the translation period of the moon. 32 This is not only based on higher mathematics, but also on the complex astronomy of the moon to which modern research testifies as the "deep things of astronomy." Hearly all the recent articles on the date of the crucifixion include a discussion of a simple form of Maimonides' complex figures, knorm as the "visibility test."

According to Neugebauer, the moon at this time in 30 A. D. was over 2 days old, in harmony with Table V. (Neugebauer, P.V., "Tafeln der Mondphasen," Leipzig, First Century.)
29 Both Schoch and Fotheringham (op. cit., p. 107) place Friday, April 3, 33 A.D. on ITisan 13 by their tests for "visibility."
30 Hevelius, Johennes, "Selenographia," Gedanum, 1647, p. 273.
31 Maimuni's (Maimonides') Meumondsberechnung, "Teil III (trans. by Baneth), Berlin, 1902.
32 His complicated problem has been translated into Germon by Baneth. Fotheringhai J.K., Journal of Philology, (XXIX) 57, London, 1903, p. 107.

It would consequently seem as if the modern application of this Jewish secret makes the translation period in general too short. On this basis--that is, if we should shorten the translation periods say fy one day-all the full moon dates on Table V would be thrust forward by one day, to Nisan I4; and, as Fotheringham complained in his application of the problem, there would be no Fridays in the series. 33 But this same plan of the full moon on ivisan 14 throws out the years 28 and 29 , because in the case of 28 A.D., the translation period would be only about $11 / 2$ hours; and for 29 A. D., 21 hours-both too short. Therefore such a hypothesis falls out--that is, that the full moon occurs on the passover day itself.

The postulate itself--that the full moon date must be placed on Hisan 13, in harmony with history--is thus its own proof; for it is the only position of the full moon providing sufficient time for a translation period of from 1 to 4 days. On the basis of this Postulate alone, astronomy can tie Jewish time to the Julian Calendar.

The translation period of the moon leading to Nisan 1, in the year 31 A.D., was $3^{\mathrm{d}} 3^{\mathrm{h}} 33^{\mathrm{m}}$. This was one of the moon's long interlunary intervals. Not being the longest, it came well within the realm of historical testimony, which allows the moon from 1 to 4 days in which to appear after conjunction, and that "often also on the third and fourth day." This period of a little more then 3 days was but on θ of a cycle in which the moon's motion swings interminably fast and slow between her limits of acceleration. To the astronamer, the phasis of the moon on April 14, 31 A.D., was just an ordinary first appearance, more ordinary than as if her showing had been quick and rapid. But on April 25, Julian day number 1732495 , toward midnight, the moon was in eclipse; and on Friday, April 27, at noonday, the - approaching unaccountable darkness of the sun occurred, marking the death of the son of God.

The following vital facts in reference to the passover of the crucifixion are made known by this simple astronomical method of translating the moon of wisan, as illustrated on Table V :

1. Fijisan 14 was Luna 14, the Passover Day.
2. Iiisan 14 was the day after the fulling of the moon.
3. IVisan 14 was the crucifixion-Friday.
4. Therefore, according to Table V; the only day of the entire series that answered to all these stipulations was April 27, 31 A. D.

F. Translation of the New Moon for Tisri.

Early in the spring of 184.3, as shown in Part II, the Millerites began to study the problem of the translation of the moon in relation to the calculation of the Jewish month and year. Finding in Ferguson's "Astronomy" a table of lunar conjunctions and phases for the time of Christ, ${ }^{1}$ they printed it in the Midnight Cry of April 20, 1843, together with his description of the moon's position. In another edition of his "Astronomy," Ferguson makes the statenent that the 14 th day of the Jewish month answers to the 15 th day of the moon, ${ }^{2}$ and that consequently, the passover was always kept on the day of full moon. But in the table given in the Midnight Cry, the full moons were placed in various positionsmon the $12 t h$, 13th, and 14 th of the Jewish month Misan. On such a basis, all his translation periods could not but be irregular, and they would by no means correspond to the motion of the moon, which, if slow, requires more time for her phasis than when fast.

In the quotation given, Ferguson mentions the large angle which the ecliptic makes with the horizon in the spring (See Diagram D), and figures that at such a time, and in such a position, the moon would in 24 hours set about one hour later than the sun. Consequently--perhaps following the suggestion of Albirun今 for a 24 hour translation constant (or mean period), as consistent with the Jewish computationFerguson's table was not very helpful to the fillerites in regard to the true translation period of the new moon, whose phasis was to mark the first day of a new month. Yet accuracy here wäs imperative if they were rightly to calculate Tisri 1 , the 7th month for 1844.

Ferguson's table of the first-century spring moons was striking in that all the translation periods were short. It made all the new moons, but one, visible on the next day after conjunction. 3 In the paragrephs quoted from his "Astronomy,"

1 Ferguson, "Astronomy," Vol. 1, par. 352. (Old Edition.)
2 Op. cit., (Edinburgh od., i81i), p. 46l. Wote: This is contrary to postulate I, Table V, and to patristic testimony, which always called the paschal day,
3 or Nisan 14 , the 14 th of the moon, i.e., "Luna 14."
3 Certain other computers, as Wurm, Ideler, ond Turner, use a constant period for translation, as suggested by Albîrûni, on p. 68 of his "Chronology."
no mention was made of other important factors which control the translation of the moon, aside from her inclination and position in reference to the Zodiac. He gave the slowest moon of the series, as in the year 32 A.D., almost the same time for translation ($1^{\text {d }} 18^{\text {h }} 41^{\text {m }}$) as for the fastest moon, as in 28 A. D., for which his table allows $1^{\text {d }} 16^{\mathrm{h}} 56^{\mathrm{m}} \mathrm{g}^{4}$ His exact table follows: 5
"True time of conjunction at Jerusalem
$\begin{array}{rrrrr} & & \text { d. } & \text { h. } & \text { m. } \\ \text { "A.D. } & 28 \text { Mar. } & 15 & 1 & 4 \text { Hiorn. } \\ 29 \text { Apr. } & 2 & 7 & 30 \text { After. } \\ 30 \text { Mar. } & 22 & 8 & 45 & \text { After. } \\ 31 \text { Mar. } & 12 & 1 & 51 & \text { Morn. } \\ 32 \text { Mar. } & 29 & 11 & 19 & \text { After. } \\ 33 \text { Mar. } & 19 & 1 & 12 & \text { After. } \\ \text { 34 Mar. } & 9 & 5 & 12 \text { Morn. }\end{array}$

Moon visible at
Jerusalem
Mar. 16.
Apr. 3.
Mar. 23.
Niar. 13
Mar. 31
Mar. 20
Mar. 10

Jewish full moon

Mar. 31. Wed. Apr. 17. Sun. Apr. 6. Thur. Mar. 27. Tues. Apr. 14. Mon. Apr. 3. Fri. Mar. 2l. Wed."

As a matter of fact, Ferguson's first-century table-embracing the years of the 70 th week-represents the very extremes of the moon's motion from new moon to full moon; that is, her fastest and slowest gait. Consequently, her translation periods should also correspond. Table V, on $\mathrm{p} \cdot 38 \mathrm{a}$, shows the limits of translation in the years of Christ's ministry actually to be from $1^{\text {d }} 1^{\text {h }} 35^{\text {mi }}$ for a fast moon, to $3^{\mathrm{d}} 3^{\mathrm{h}} 33^{\mathrm{m}}$ for a slow one.
the phasis of the moon--to the "Isagogue" of the astronomer Geminus in the first century before Christ. Geminus taught that the earliest phasis of the moon is on the first day after conjunction, and the latest on the third or fourth. Scaliger also emphesized the third, as mentioned in Section $E, 7$ and Hevelius two to four days. ${ }^{8}$ The error concerning the time of translation on the part of Ferguson, and the fact that he placed some of his passovers in inarch, too early for the barleyharvest, resulted in the ultimate rejection of his table by the Millerites, together

[^19]with his argument on the date of the crucifixion.?
In the early part of the 184 movement, the leaders had started the year which they counted to be the last one of the 2300 -year period, with the vernal equinox. This was the "Jewish sacred year 1843." But even before the vernal equinox of 184.4 had passed, which they believed would close the Jewish year 1843, the Faraite teaching regarding the ancient Jewish mode of computing the moon's phasis, directed them to a closer study of the Jewish year, and its relation to the 2300-year prophecy, as noted in Part II, Sec. VI. Almost at the same time their attention was called to an autumnal ending for the prophetic year, as suggested by the 10 th day of the 7th month-the Jewish day of Atonement and the Jubilee. ${ }^{10}$ For this reason there does not seem to have been any attempt on their part to compute the translation period for the new moon of Iisan in 18Lय, although the Nisan conjunction was given in the Almanac as April $17^{\mathrm{d}} 11^{\mathrm{h}} 31^{\mathrm{m}}$.

The Jewish date for starting another new month was also mentioned--this to correspond with the Karaite reckoning, the Rabbanite Misan having been a month earlier, or in Iarch. The whole attention was ultimately centered on the translation of the new moon of Tisri, upon a scientific basis, and upon one that would harmonize with the prophecy. The following statement from an editorial in the IIdnight Cry, shows how closely the Adventists of that time reasoned in regard to the identity of the day, October 22:
"The new moon being probably seen in Judea on the second evening from its change, when it would be one day and 17 hours old, and which corresponded with 11 A.M. in Boston-strengthened us in our opinion that this must be the month. "ll

Before attempting to analyze the exact meaning of the quotation here given, it is essential to bear in mind just what is involved, astronomically, by the every-day language, "change of the moon." Though everyone uses this expression, it has direct application to certain astronomical events known as the four phases

[^20]Part V--Crucifixion Date--46
of the moon, which mark off her performance every 29 and $1 / 2$ days. The new moon phase mentioned in the foregoing lidnight Cry editorial is, as noted, technically defined as conjunction, and represents that instant of time when the geocentric longitude of the sun and moon are equal, as measured from the center of the earth, the moon being between the earth and the sun. ${ }^{12}$

As has been stated, when the moon in her elliptical circuit is nearest the earth, she is said to be in perigee. Then her motion is rapid. When she is farthe st away, as in apogee, then her motion is slow in relation to the earth. Her manner of travel, fast or slow, is most important as concerns caloulation. In ancient times, this phenomenon was a guide in the starting of the Eebrew month, ${ }^{13}$ and also came to the attention of the Millerites as an important factor to the translation of the moon as they were coming to their fundamental conclusions on the prophetir dates of the 2300 -year period. As regards the real significance of conjunction, we should likewise understand that, being reckoned as from the center oi the earth, this phase of the moon therefore represents that instant of time which would have a different local time designation for each longitude on the surface of the earth.

The quoted expression, "11 A.M. in Boston," in the foregoing reference, was obviously based on the difference in time between Boston and Jerusalem, which is 7 hours and 5 minutes. 14 No mention is made in the Midnight Cry or Advent Herald of an almanac for Jerusalem. In fact, it was said, "we have no certain means of knowing," when the Karaite passover month really commences there, ${ }^{15}$ but the sunset time at Jerusalem on October 13 could well be considered near 6:00 P. 14 . If from this point of time, 7 hours are subtracted for the coincident time of Boston, the hour would be 11 A. M. To be exact, it would be $10: 27$ A. 1 . .--if the true difference

12 See "Conjunction," in Tebster's International Dictionary.
13 Hales, ("Analysis of Sacred Chronology," Vol. I, London, 1830, p. 67), includes a quotation from Geminus on the phasis of fast and slow moons. The difference in hours between Boston and Jerusalem is the sum of $4^{\mathrm{h}} 44^{\mathrm{m}} 19^{\mathrm{s}}$ (time of Boston, west from Greenwich) and $2^{\mathrm{h}} 20^{\mathrm{m}} 53^{\text {s }}$ (time of Jerusalem, east of Greenwich), or $7^{\mathrm{h}} 5^{\mathrm{m}} 12^{\mathrm{s}}$.
15 Advent Herald, Sept. 11, 184 4, p. 45.

Part V--Crucifixion Date--47

in time, or $7^{\mathrm{h}} 5^{\mathrm{m}}$, be subtracted from the exact sunset hour in Jerusalem, on Oct. 13, which, for 31 degrees north latitude, is authoritatively given as 5:32 P.M. ${ }^{16}$ In either case, the argument and conclusion would be the same--the beginning of Tisri 1, in Jerusalem was on October 13, and the corresponding time in Boston was still the 13th.

In Boston, the new moon of October, 184h, in conjunction, occurred October 11, $18^{\mathrm{h}} 40^{\mathrm{m}}$, reckoned from midnight, or 6:40 P.M. ${ }^{17}$ Being a fast moon-her time from conjunction to opposition (or full moon) took $14^{\mathrm{d}} 5^{\mathrm{h}} 30^{\mathrm{m}}$, or less than the mean-m and her motion increasing, for she was nearing perigee, she could be visible on October 12, right after sunset. To quote from Fotheringham, who has summed up the factors which come into play as regards an early or late phasis of the moon:
"If again, the roon is near perigee it will move quickly; its right ascension [or longitude] and time of setting will advance rapidly, and there will be a tendency towards an early phasis; if it is near apogee, it will move slowly; and there will be a tendency toward a late phasis. "18

Fotheringham followed the rules of Hevelius, as may be seen from a scanning of the "Selenographia." He found that under favorable circumstances-as when the moon is fast and in perigee, and new early in the evening-she could be visible the following eveninge ${ }^{19}$ The conditions all conspired for a quick phasis of the new moon in October, 1844, so that in Boston she could be seen within 24 hours after conjunction. But because of the difference in time between Boston and Jerusalem, her crescent was not seen in Jerusalem until the following evening. (Diagrams E \& F.) The quick phasis in Boston was an unusual translation. Hevelius declares that the causes for such a rapid lunar translation seldon occur together. 20

16 "American Tautical Almanac for 1939," p. 239.
17 Standard Almanacs for Britain, Germany, and France in 18LL., as U.S. Hautical Almonac goes back only to 1858.
18
19 Hevelius, "Selenographia," Gedanum, 1047, pp. 274, 275 . Dovanninm haec tria) requisita vix una ingruent." (For within a period of nine years these three requisite [causes] with difficulty coincide.)

Part V--Crucifixion Date-- 48

The Adventists understood at least some of the factors controlling a rapid phasis of the moon, hence the sunset of October 12 -marking the beginning of October 13, Jewish time-was rightly fixed upon, in New England, as the proper instant for the first appearance of the new moon. The sunset on that day was at $5: 26$, in Boston, 21 and there were yet 10 minutes in which the young moon, nearly 24 hours old, could be seen, for she did not sink beneath the horizon until 5:36 P. MH^{22}

A check was also made by the lifillerites on this some conjunction in Jerusalem which was dated Oct. 12, $2^{\mathrm{h}} 45^{\mathrm{m}}$, or 7 hours and 5 minutes later. But there the moon could not be seen in so short a time as the first sunset after conjunction, which would be a period of only 15 hours and 48 minutes. 23 Therefore, the Adventists reasoned, the Jerusalem new moon would certainly be seen at the second sunset, which was nearly "one day and 17 hours" later than conjunction. 24

The moon herself was scheduled to set soon after the hour of 6 . Subtracting from this point of time the approximate difference in time between boston and $J_{\text {erusalem--that is, } 7 \text { hours--they arrived at } 11 \text { A. it. on the same October 13, as }}^{\text {a }}$ the coincident time of Boston. Diagrams E and F, which follow on p. 49, show this October conjunction in 184 4 , in its relation to these two cities:

Part V--Crucifixion Date--50

Had it been possible, in 1844, for one to telephone from Boston to the Patriarch in Jerusalem at sunset, on October 11, asking the time of day, he would have answered, "Yes, this is october 12, 1:45 A. Ii., and the moon is just now new; she is in conjunction"--except of course that the date would have been given in Jewish $E \& F$,
time. Let us therefore place, as in Diagrans, the Boston P. F. clock along side the one in Jerusalem which is an A. $H_{\text {. }}$ clock, so that October $11,18^{\text {h }} 40^{m}$ coinoides with October 12, $1^{\mathrm{h}} 45^{\mathrm{m}}$, as the same instant of time.

From this point, mark off the days and sunsets for Boston and Jerusalem. Then note that every point of time in Jerusalem-as for instance midnight, ending oot. 12--occurs 7 hours and 5 minutes earlier than the midnight ending oct. 12, in Boston. Consequently, at sunset of october 12, in Jerusalem, because the new moon is too young to be seen, being only about 16 hours old, Tisri 1 begins the second sunset after conjunction. In contrast, Tisri 1 in Boston began the first sunset after the change. Therefore we see these first days of Tisri--the one in New England, and the other in Palestine-overlap each other for a period of nearly 7 E \& F
hours. Dingrans show the common instant of the two conjunction dates, the relation of the clock events of our civil time, and the position of the Jewish month Tisri in these two wide-apart places of the earth. This was understood and declared by the Millerites.

The translation of the moon was, in this instance of October 11 to 13, 18L/4, dependent upon the simplest of the principles which govern the moon's performance relative to the starting of the Jewish month. But the position of the moon was unusual in that her phasis in Boston occurred within 24 hours after conjunction. The scene at Jerusalem was carefully reconstructed by the fillerites, evidently to acquaint themselves with the inequalities of the moon in the land where God had said, "Observe the new moon, "25 for the marking of their year and its holy feasts. It was right that they should do this, for Jerusalem is the prime meridian of ancient Jewish time, and of prophetic time. On October 13, in Jerusalem, the sun

Part V-mCrucifixion Date-- 51

set at 5:32, and at about 6:25 P. N. the moon also dipped below the horizon. So she was at least "one day and 17 hours old," as intimated in the reference from the Midnight cry.

One more bit of evidence from this date offers itself to prove that in 184 the right time was chosen for the phasis of the new moon of Tisri. In October, Jerusalem civil time, the full moon occurred on Oct. $26^{\mathrm{d}} 7^{\mathrm{h}} 26^{\mathrm{m}}$. By placing this full moon date on Tisri 13, on the basis of the same postulate as for the iisan moon, (See Part V, Sec. E), and marking off the calendar days, both Jewish and Gregorian, back to the beginning of Tisrimit can be noted that Tisri l began on sunset of Ootober 13 in Jerusalem, which phasis, we have shown, corresponded to the phasis of October 12 in Boston. This check works both ways, so that the translation of the moon in 1844 , for the meridian of Jerusalem confirms Postulate 1 , which places the full moon on the 13 th of the Jewish month.

Such was the problem that the earnest truth-seekers in 18/44 faced and mastered. It was the harmonious conclusions of such precision in applied calendar science that "strengthened" them in their opinion that October 22 would be indeed the very 10th day of the 7th Jewish month Tisri. No other day could have answered the joint demands of the Scriptural law of the appointed feasts, the irregularities of the moon, the factors governing her translation, the undeviating course of the earth and sun, and the illusite geographical problem introduced by the difference in longitude between Boston and Jerusalem.

G. Summary of Conclusions.

1. Only by the true dating of the beginning and ending of Christ's public ministry is it possible to determine the correct chronology of the full 2300-year prophecy, and the related events of history.
2. The Jewish calendor of todaym-man's most complex system of computing time, and described by Joseph Scaliger as the "most ingenious and beautiful of all
systems"-is evidence of early Jewish development of a dependable method of reckoning time, in hamony with known and fundamental principles of astronomy and chronology.
3. Through the principles of astronomy and calendrical science, we are able to tie Hebrew time reckoning in the first century to the current Julian calendar of the Romans.
4. By a correlation of astronomical science, Biblical specification, and historical record, the disputed date of the orucifixion has been determined.
5. By means of this correlation, (a) the true placement of the paschal month inisan, and (b) the date of the true paschal day (Misan 14.) have been shown.
6. Friday, April 27,, 31 A.D., Julian time, has been demonstrated to be the only date during the public ministry of Christ which satisfies (a) the Bible requirement for a Fridaympassover crucifixion and (b) the definite denands of astronomy for the corresponding coincident positions of sun, moon, and earth.
7. The complementary relation between the crucifixion on April 27, 31 A.D. and the great antj.typical Day of Atonement ushered in on October 22, 1844, at which time the 2300-year period ended, has likewise been demonstrated.

Grace Edith Amadon

Insert, Part V, p. 15, as footnote.
47 At this time, the Hebrews had been calculating the conjunctions and phases for at least a century (Albîrunî says "nearly 200 years after Alexander, "--op. cit., p. 68), and perhaps longer. (Sidersky, "Chronology of the Jews," p. 615). They had divided the hour into 1080 scruples, a value which was very old, which had originated with the ancient sexigesimal (or fractional) system of the Chaldeans about 400 B.C., and which agreed with the "Almageste" of Ptolemy (Sidersky, op. cit., p. 639). With the important feature of the moon's fast and slow motion, the Beth-Din must have been indeed familiar, for all the questions asked the Hebrew witnesses, though directly referring to the moon's position in the sky, thereby had specific relation to her rate of motion. In the century before Christ, Geminus wrote in the "Isagogue," "the sixtieth part of a degree is called a minute; the sixtieth part of a minute is called a second. Likewise the second is divided into sixty parts, and each sixtieth part is called a tertie." [Italics mine.] ("Elementa Astronomiae," p. 205) He further showed that with this table in hand, the Chaldeans had recorded the angular distance the moon travels in compassing the zodiac belt; that they had actually obsorved that in 19756 days she had gone around the zodiac 723 times and 32 degrees over. (Op. cit., pp. 203,205) And so the least and maximum daily movement of the moon had become known facts before Jesus was born. They had been computed by the scientists of Babylon, the "home of cstronomy." (Hoffman, "Mar-Samuel," p. 17.) It jis said that the Jews learned from the Babylonians much of the science of astronomy in which they had "multiple knowledge." Also, "among them the study of this science was declared a religious duty." (Op.cit.)

Insert, Part V,p. 21, as footnote.
48The real meaning of Josephus' well-known statement about the passover, "when the Sun is in Aries" ("Morks," p. 75), seemingly rests on a Pharisee interpretation of the paschal moon as the equinoctial moon of Aries-a definition in no sense in accordance with the llosaic rule, nor in accordance with the Sadducean position which was dominant in the time of Christ's ministry. If Moses had appointed the passover to be in the ancient constellation of Aries, then another constellation, due to precession, would have marked the time of the feast in the first century A.D. (Ferguson, "Astronomy," p. 189.) On the other hand, if Josephus referred to the zodiacal sign Aries, as is probable, and not to the actual constellation itself, then on another count Hoses can in no way be held responsible for the inference of Josephus, for it was not until seven or eight centuries after inoses' time that the "ecliptic was divided into twelve equal divisions, not associated with the actual stars," and the constellations were replaced by the signs. (Maunder, op. cit., p. 319.) These signs have never changed. The ecliptic is a circle of reference; and an it, from its first point of Aries, every celestial longitude is reckoned. (Young, Charles A., "General Astronomy, Thew York, 1898, pp. 11, 142.) Cf. Scaliger, op. cit., p. 169.

Insert, Part II, Sec. IX, p. 15, close of 1 on 143 chart.
It is to be noted that the 43 chart makes no mention of the date of the end-year of the 70 -week section of the 2300 years, or of the placement of the cross in the 70 th week--whether at its close, or in the midst. It was prepared in that transition period when, virtually persuaded of the inaccuracy of a 33 A.D. crucifixion-ending of the 70 th week, the Millerites had not yet come to agreement on the 31 crucifixion in the "midst" of the last "week," and the 34 terminus of the 490 years, with the corresponding 1844 ending for the full period.

MOON'S APPARENT MONTHLY COURSE IN ZODIAC BELT
Through the center of the ZODIAC BELT runs the ECLIPIIC; or Sun ${ }^{\circ} s$ apparent path in the sky, as seen from the earth The Moon ${ }^{8}$ s apparent path is also projected by the eye upon the Zodiac, around which (20) appears to travel every month: Though millions of miles apart, the paths of both Sun and Mon seem to be traced upon the same celestial belt. In one mantis time the Sun has advanced one sign only, while the Moon has accomplished nearly the whole Zodiac Her orbit is inclined to the Ecliptic with an angle of about 5 degrees, and upon this small inclinedion all her phases depend. She passes through the zodiac in an irreg' ular velocity. causing her to move north and south of the Sun each month Her smallest daily movement amounts to $11^{\circ} 6^{\mathrm{m}} 35^{\text {s }}$, and her largest $15^{\circ} 14^{\mathrm{m}} 35^{\mathrm{E}} \mathrm{C}_{\text {, }}$ the Sun requires 6 months to go from Aries to Libra that is, from the Vernal Equinox to the Autumnal. The Moon apparently travels this distance in about 2 weeks as from new moon to full moons. In her daily revolution the Earth turns from Aries to Libra in 12 hours.

[^21]DOCUMENTATION
\therefore ep Levine Encerelofodiea, art. Interéulation.
$\frac{1}{2}$ Martin P. Nilsson, Primitive Time-Keeping, p. 273. London, 1920.
2 Jotham Johnson, Dura Studies, p. 5. Philadelphia, 1932.
3 Literally, thy floor and thy wine-press. (Margin.)
4 Ex.12:6; Num.9:3,11; 28:16; 33:3; Josh.5:10; 2 Chron.30:15; 35:1; Ezra 6:19;
 5 Desire of Ages, p. 77; Ant.III.X.5:
6 The ancient Jewish calendar was fixed in two points: (1) by tying the Pascover on 14 Nisan to the day after full moon; and (2) the beginning of the Jewis day to the sunset point. This regulated every sacrifice to the limit of the calendar, in harmony with Pentateuchal and astronomical law.
7 Since the time of Ezra, the month Elul is said never to have had more than 29 days. Cf. Adolf Schwarz, Der Jüdische Kalender, p. 16; Rołsh Ha-shanah 19b, $32 a$; Beta bb. The Talmud seems to carry the idea that Elul had always been incomplete. So also the astronomers of Nehardea, the home town of Mar-Samuel (Schwartz, p. 45).
8 In Leviticus 23, Pentecost is computed as fifty days inclusive from the day of offering the wave sheaf. Hence the feast was full fifty days after the feast of unleavened bread, which always followed the Passover fourteenth.
The first day of Nisan and the feast of unleavened bread on the fifteenth were always the same day of the week.
10 According to Maimonides and Jewish chronologers generally, the modern Jewish calendar is based upon the "mean motions of the sun and moon, the true having been aid aside."--Maimonides, Kiddush Ha-hodesch, cap. VIII, sec. 7,8. Tr. Mahler. \wedge Wien, 1889. (This calculation is not involved by the inequalities of the moon.)
11 Albîrû̂ní, The Chronology of Ancient Nations, p. 66. Tr. Sachau. London, 1879.
12 Emil Schürer: "Just this fragment [February Ministry, p. 35, end of second column shows that Aristobulus . . . really gave a description and explanation of the Jewish law. "- The Jewish People in the Time of Christ, Div. II, Part III, p. 241. Scribner's, New York.

13 G. Schiaparelli, Astronomy in the Old Testament, p. 177. Oxford, 1905.
14 Similar to the Babylonian months.
16 Dedication of the first temple; Ezekiel 40:1; Nehemiah 8: John 5; John 7,8; Wars II.XIX.1,2.
15 E.W. Maunder, Astronomy of the Bible, p. 298. Sec. Ed., London.
17 Richard A. Parker and Waldo H. Dubberstein, Babylonian Chronology, p. 30. University of Chicago Press. 1942. (Papyrus E of the Assuan Papyri also supports this date.)
18 Nehemiah has no change in the regnal year of Artaxerxes from Chisleu (Neh; 1:1) to a point of time past the first of Nisan (Neh.2:1). Hence the king's regnal year must have been counted from the autumn.
19 For the computation of Jubilee years, see G. Schiaparelli, Astronomy in the Old Testament, pp. 144, 145. Ausaxigne
20 All the Gospels recount the Feeding of the Five A' ${ }^{\prime}$ thousand \mathscr{S}^{\prime} Matt.14:12-21 shows that this miracle occurred after the death of John the Baptist, and John 6 and 7, that it occurred before the year of the crucifixion.
21 See February Ministry.
 Lender, wife

[^22]Proof.- In the foregoing Table II, there are three Sabbath-day feasts:
A.D. 28 Feast of Tabernacles--two days later in the week than 1 Nisan.

30 Passover fourteenth--day after full moon, Jewish reckoning.
31 Feast of unleavened bread--same week day as 1 Nisan.
The years 30 and 31 could not possibly check with John 5 , for they belong to the gospel narrative after the death of John the Baptist (Matt.14:12-21). 20 Therefore the Sabbath feast of Tabernacles in $28 \mathrm{~A} . \mathrm{D}$. must be the ore required. Later day p On this occasion the Jews tried to kill Jesus, and He had to leave Judea; The whee where He had been ministering for several months. Two years later He returns again to another feast of Tabernacles, and in His teaching refers to the earflier healing of the impotent man at Bethesda. John 7:21-23.
there
i Nisus on s Thursday

The chronological tables here submitted as proof of Two. Biblical syn chronisms are based (1) upon the ancient Jewish ruling that the Passover foll lowed the Jewish day of full moon, Jerusalem civil time, and (2) upon the reTo the
lation of the feast of Tabernacles ta The synchronism in
given in The March Ministry? Λ. ford fores he synchronism in Acts 20 , is of a_{3} different character; fatinchy date for fores given by Luke, ea be identified with a known of fade moon and its corresponding day of the week, independently of calendar theory, On the contrary, the two syn. here have been presented on the basis of

 ancient Jewish calender., From an/ astronomical standpoint, more evididence is

for this particular date. ${ }^{19}$
The context in Nehemiah 8 also tells the day of the week on which this devotional conclave occurred. Three times the people were remindedtby their leaders that the day was holy, holy unto the Lord their God (verses 9, 10, 11). Such language is not used of the ancient holy convocations, although that, day was a convocation sabbath, on which Ezra read the law (Num.29:1). But it was more then that--even the seventh day a a cheek, as description implies. And so likewise was the ensuing feast of Tabernacles, The

In the year $44 \overline{3}$ B.C., the paschal moon fulled on Tuesday, the paschal fourteenth was on Wednesday, and the feast of unleavened bread, on Thursday-the same day of the week as the first day of Nisan. "Bute the first day of the seventh month in this year, and the subsequent feast of Tabernacles both occurred on the seventh day of the week, according to Nehemiah 8. Therefore these dates were each two days later in the than the first day of Nisan, which was on Thursday. Thebdomad

* The asterisk marks the years having an intercalary Nisan, as indicate by the late Passovers.
The feast of Tabermeles on the fifteenth occurredjtwo days later in the week than i Nisan, or its compahion/date, feast of unleavened bread.
the year B.C. 449 to B.C. 430, only one Jewish year began on Thursday, Thus bringing the inst of Tishri on the Sabbath day. namely, the year B.C. 443 , \wedge This year fully agrees with the historical natrative in Nehemiah and with the calendar reckoning according to the Passover.

The Sabbath-day Feast in John 5:1
a
difference of opinion exists as to the year and feast in John 5, but
the crucifixion calendar points them both out. We know that this festival
must have been early in the public ministry of Jesus, for John the Baptist Thonaph the context seems to imply that he had been was still living (John 5:32-36), cast into indicate least a prisons.
 recent event. Λ The following calendar outline of the four years of Christ's public ministry demonstrates the ${ }^{2}$ bath" - day fash of the yario-d:
indurpereable cominpuretion

 Eshu Jlix avi brapbiched meano of Tl Tah 1 ar by a culubar table al Ie of obver tw doy the

 Alniaine Officie ot The Vu, 9, Uaval Obiervatory, aud law be

phndioniani whatever pariod of history the hed apprear. If to dargy an event is marloed in lermes of the day of the weld and l'i correnpaciliny daleEiltice limar or solar - Then the yar eanby he to tod

 of adne of spather the

1. Nr. Wood derives the date of the New Moon in March 31 A. D. by using as a. starting value the actual date of the New Moon of Thursday, March 19.33 (G.C.T.),1931. It should be kept in mind that periodic inequalities in the Moon's orbit may retard or advance the actual date of New (or Full) Moon by as much as a half a day. Thus, the date of the New Moon found by this method may be in error byathis amount. It would require a much more elaborate calculation to eliminate this uncertainty.
2. The date of the Vernal equinox for the year 1931 is Saturday, March 21.59 (G.C.T.),1931. This is l $_{6} 40$ earlier than the date used by Mr. Wood. (See American Ephemeris for year 1931, p. 678)
3. The length of the synodic month and of the tropical year as used by Mr. Wood are sufficiently accurate for the purpose. It would be more accurate to use for the interval of 1900 years from 31 A.D. to 1931 A.D. the average length of the synodic month: $\times 2350029853058846=693969.828 .8$ $"$ " " " "tropical year: $\times 1900365.242304=\frac{693960.3796}{8.4512}=$
4. For dealing with so long intervals of time it is advisable to $8^{2}-10^{1 \mathrm{~h}}-49^{\mathrm{m}} \mathrm{7}$. use of the Julian Day numbers, given in the American Ephemeris for the year 1931, p.759. As it is customary to begin the Julian Day at Greenwich Mean Noon, whereas the G.C.T. is counted from Greenwich Mean Midnight, it is necessary to subtract 0.5 from a date given in G.C.T. before finding its Julian Day number. And in order to convert a Julian Day number to G.C.T. Od 5 should first be added.
5. Making use of the data given above I find:

Vernal equinox, Saturday, March.21,59,1931(G.C.T.) = J.D. 2426422.09 1900 tropical years $=99137$ weeks +1.38 vernal equinox 31

The Julian Day number for Jan. 0.5 (G.C.T.) of A.D.31 is (American $=W$
 $242642=06$ $\frac{.21}{.54}$

President L. H. Wood

Ermanuel Missionary College
Berrien Springs, Michigan
My dear President Wood:
In reply to your letter of January 28 I must say that I cannot answer your question until I know how accurately you desire the position of the moon. The figure you give will serve for rough accuracy and possibly for what you need but more definite information is required to answer your question.
ps
Very truly yours,

Ernest W. Brown

February 10, 1932.

Dr. Ernest 7. Brown
116 Everit Street
New Haven
Conneotiout
My dear Dr. Brown:
Yours of the 5 th is just at hand.
In checking up the date of the crucifixion I find authorities differing as to the date and cay of the week for the astronomical full moon during the years A. D. 28-32. Therefore I figured back from Vernal Equinox 1931 as follows:

Dr. Braost \because Brown - \#2
My question iss is the value
PT S synodio month $=29.530588$ days
surfioiontly acourate to bof suro of results 1900 yoars ago?
 Thanking you hoartily for yur holp. I romain

Prosidon'.
LHIM-oh

Yours of the 5 juist at hund-
Th chectining up the date of the encifixion ifins autharities riffering as to the dente and deny of th wate foor the ashosnomneal full mosen durieg the prass A.D. 28-32. Thirefurs I figured busk oforme Vernal Eqininag 1931 as foellowo.

$$
\begin{aligned}
& V_{1931}=\text { Man } 22.989 \text { Inudiy }- \\
& N_{\text {murn }}=\text { Man 19.32 Shriodenq. } \\
& 1900 \times 361.242198=693960.17620 \text { dago } \\
& \text { Itypidic mo }=29,530588 \text { dayp } \\
& \frac{693960.17620}{29,530 \sqrt{88}}=23499 \text { Mman } 1+20.89 \text { ancyp } . \\
& \frac{693960.17620}{7}=99137 \text { whs }+1118 \text { da. }
\end{aligned}
$$

Full Mopiz

My quasinin is: is the vorue
I Aynudie montl $=29.530588 \mathrm{day}$:
Dufficirity aocurate to ber sure of results 1900 yrars ago -
fur Conestiofect is a selfaddusises minlop. for your eanvanience. Dhunting pon heartity foryror heep o remain.

Orng liuty gumers.

IVey Kuit vor 3/890-
Dhishirs Ponlivviscialisto fram

 plneing the Pasehnc fuce suas: fifgur it r it io prosible that保 the hivi of Qhivstre. 4 th of
 Kinck no Muri 17

 3.

30 2woraput

zz Sut Apiz
33 N. ip1

$$
28 \quad 29
$$

$$
\begin{array}{cc}
\text { Wari7 } & 19 \\
\text { apis } & 18
\end{array}
$$

$$
\sin \sqrt{ } z
$$

$$
25 \quad 27
$$

$$
12 \quad 14
$$

$$
1-2 \quad 3-4
$$

Qshim, Qopronolegic O.V newgromer CE.71.N48 Nectuming of new eight ald Rilh
The visiticion of the Cumas Presint in zew ored rgith ingiter bi uffined inth folluring manner.
 The coulerft of thinepen nust heors a
 Dru a elefinié h_{0} (ho eximiss michand iffractism):
Thesecanditions vere fivin in Dabe Chiven, III achee 14. It has Brampurund that imo cohmurs h, α hi are noth exrmet: here in late 221 a fortin lathec of tas sohoch hao liomgraiaion.
the ponitinin of the sum $>$ moon at th insenit of shuaex for th foimitition aceurate to thown thi sinfie viveth. 6 nivn. Cerenwase thining this tivie tife paritum of the wown eknopos cureng
 Earnectomitef of sumes 7 riac alsosuffin

Necinate for this.
The haur augle of the mon is desisive. The knurayle of tformesinio
$R_{1} A_{1}$ of the sun $+\frac{1}{2}$ dinmal are (withent refiacion - $R_{1} A$. of mons
The placer of sum marui uns A also Bor necurned Mith tāhb whish gunancee an aceurest in the finirsucuct of $11^{\text {? }}$

In 3 a 3 -mathat io given sotiot Aviubsiel Rereveiffievetios whist gons entieg unanns the scefioning of the hair ungle. The muchopis gavee for all distaucis inp toteo:
c = Dislantee sun-mimu
$b=$ inchinetrin of acerfive to Picematimio
$m=$ auge but heajtis - quaterice smins,
Qo- $\phi=\mathrm{c}+m=$ melonction of distanec o fort sumom to the hanizudenl.

$$
\phi=\operatorname{lat} \cdot \lambda=\ln y
$$

 Ormus dahero of (Annnigadra,

- Kenligiter +33 munah forfir. $\lambda=35_{12}^{\circ} \mathrm{E} . \phi=31^{\circ} 8 \mathrm{~N}$
Actemninitition of hinie of newomsoic - 133 man 19-12.5 yu. Q.T(imiditay). Thutight is visible 17 heners ofer new mean. The neckorning wowed hengfires uffly o
 lateppence ingt afear midenght-so it
 nioak arobinap). that the neusejglt may fres sew on the summing of thio cemy İs parsthenty, is in thi girmin enae lo buspraund.

Brid T hinie surnat. man20-18,18 fuer. Dorthiotince det. Sang of O ans Lryg λ and cist. β of the miven

$$
\begin{aligned}
& \beta=358.1 \\
& \lambda=15.0 \\
& \beta=+0.9
\end{aligned}
$$

$$
\Delta / 2=\lambda-0=
$$

Sue celoo.
"Hiefstafilis Bereshming vorn thimees Erschimungin""

Dafien Gus Ist. Chan III.
Pivinengrbuues. QBizN5
Jafeln zur ast ©hron II
Jafeen fin Bome Plaveetin r Mond. Difeen du noudphasen.

PB:TV QBI2N5.
"The thru ealuseur of Ancient Lraee" Gulime Marganstorn:
"ITabrew thuin Qailega Manmal" Veel If $13-79$.
Cal.I - The equamite eae in 'ne efy the Cquavirits culd Phosiceiuns hothshy the names of th nionith.

- Gir- 11 migs $6 / 1,37$

Ethanim-1 King 812
Bul $1 \mathrm{kug} \mathrm{C} / \mathrm{3} 8$
Fassine a solar yuaw benais on the hwo Equmioxus:
CalI. Has cereñiu affinitio to Brb. - Cal. leses anly minume for the manth.

CalculhrIII-uses Bab mouth numes
Tham - TuR 41 Esl, $3 / 7$
Sivau - $\cos 8 / 9$
Slue - Tuh 6, 15, 1:mue 14/27
Kishor-Zach $7 /$, nuh $1 /$
Jubut rsh $_{2} 2_{16}$
thekat Gueh $1 / 7$
Adar izo. 6/5 ise $3 / 7,13 / 129 / 1,5517.9$
"̈n III ot'el nuplan ile by the firmish hiople for ale regigians purpeses is ofesurse huic solar inehaniectr Apfrarinth is differsfrine ©re II. tu hōo prime charsekinitios. (1) in ito nse of ito Bat. nanueo uith montho instind of indi cuteng thicee hy meruthon, suub (2) m a more vach sup eunof interealation by tho risestriniof ain extia suonth if 29 relags at neqular
vilinvals, uiz 7 himes in a eyele of 19 yam." \#f 73.74 .
"Cecanding to Ed. Maheer. (ZA $\overline{X \times x \times V}(1922)(-69)$ this miseten Yras cyele eypein of intereneation varsemplopes in Ahhylorivi Ghudy in the b theint $B e^{n} p>4$. Oassing thip lenfaim che encelivin of the armple
with louse sh with loue stimes tfestinie celturnimino thit then mas ame caryovirian no to the Exact clates of the ustivis fratinalo. "Ihe
 ving micker himer neessatereid the fining of 唯icial dake for the thannmec io the fiderinis by ace the people, whin thit might gntim fivine vice parle it the

Intesmarn mainitaius (R.E.g. 53 (1907) p.95), that the slephautive Jewe reaternex itu Yumb havic the ohof nisan. Bring m a forvign bued thiy nomed nousiarely aduph the caluckur in use. Dwinig $5^{2 h}$ Cuph BO Eq. wns likely a Ousian pravince aus thinafare inthrmess. the Bab. ©neurdar with the nilur-duction of Nawepris day on Misan 1 . (ef Junist In Ey, III 501 f. Gitiote Oalemema)
the riuson in
Gotricergy.
BL 1620.536
 Puluniñ squl.

Than designneif no Enizu "Lhe harsc efaniotim" Tind washolegient buto sim whamp taok precidince avor Phaminsh the omnigas The chif phernomana to which abtution twas dixectis wive new nomí, fuce maxime The hime of in isaffervanec of the smo of th manet, haleas. ahuartheric obseunitimio ind scejpies.

The lumar cyece of rayrs mins not inhoducts matie zte $\overline{3}$ scutumi $B C$. ashial whembiterin wo the selemititas O deterniming the hive of afferainince ofthe new nuov' whethir rut the terming
 hermins avine of en evisid ley cluredo an the right whum thenewonem uswo Expeceris to affion theievo comsitines a hear auremi.

This mueertaints reganding the hew nunu ainclord an tiven greater nuecieaines reganding tinic If fuce m ．The castrvearical usts． Sfer a murgion of tro less than Piva demp as a passitle tivie of ficecrivam prom a promatine offernnce an the 13 化品 13 सt Rem to a Pilerevs offerinanecu un the
 regirded as 隹 ronnal perind，The to earey α lis tate wors negaided ho imfandiahec anicuo，bn cause of the qumunt of abnommity， but the exach－nmenve of the infariaratce omicu seariss with the monchs if tty an， It prognoticut bade erops if ih

Aistinhaners of the eximbin, if in whis. Kus neso a pruninuse liaffeannuce of the noou at the and of thinonth or an alsenee of tho murni for more thaiw the nomuce Lhicc denys was viewnde with diamma, in is inded, evinits disaffeirance at thenownal bime ocerairenef amxich -a simmival of eavier bueidfo which ryaith this disoffean nuec wo the coferine of the maxn by tistile paverss in the himime. tolu exfintory ritis soure fresonibud - Pemimilg for the sueer, whomd Rieicricise the cine foricauhens nos te privirke afo fods los. augar Enving thore auxizins deyp

The god Bin wens asficinely林 aty god of Mri p 271
"Jo this day. the arubs grect the new moun mith shouto of joy ans the gavish sitival preseribis a spicinal sernies for tho cecancim whioct mioudis the recien of hqums of joy. this jey on the reapfeneramee of the numate is मatce eypuinces ii vasiins A sunerian hymins originating with the mooncule ut haping Shu havin nuethear mineso of haping frist Cresent mas seen in the sty. Sow hav. Reviri $B_{N h}$ + Aumnin 1536 .
 Bee Rocaleid onlece Ps. $(113-18)$ arifactions of orm

PJ. 39_{21}.fL. 3
The trimes Drkes of Ammiza ine ja, Laugheno Dothoringhanne -
"Bothth Babserninest and the a meient Gaws in detiniomingthe trepining of th moutc vinc nelunser ong in o-arenvelinios Hude in the sumining which cluses
 erocent whs rist Reen, the dimy
bugniming not inemet maio hugnining not sumset now negarded as the 3oth ig the ver
muvute: is it was peem that dery
 was the first if the new mants.
The shservation withe clese y the The ehservation withe clese yo the
 inlentet onl, iv Aex no breming senthe ealeudar: " $p 98$.
"A phnign pring thit the mannining of the numith evens fixis by obsermieitin is to ber fuinut sit the oncceron nint Whient sehoeh has ugureenterd the astrotes dacio of the Liginining Ifthmusth bey an aralimutimiand. farmula ... Ao derpatio tathes Mfliaw solinify the witasexi forist days of the mintt at ale spoetio The niference is shal thp anticest. tugnumingo pी thermincti \qquad

- harebor en dolesunivéf oniginiely byaclial efosenvetion of the evocinct.
$\beta p \times 4,46$
Tu baver of bouk Achuocisluates for the mem are isen).

The cure of thmumabi firms bristonce thint the perman on in intincoblinay yworth' was waes in 今rkytum in hio ningo.

The Date of the Qmaificieins PA't-JSS.
(1904) 8.K. Jorhurighnum

Eaqueoterni-

1. At what point iutimasus cause aid theal numith bugin ins whit, mee detenmued the interealition if a 30° (2) day.
(2) ahwhuh efachppint in the suis couns did thealuitar ymu bugin, and whahruee delerninied the intersaletion of a 13 K monch.

O Ale dremnentum mideluec ohaws chil 10f Cewheng gives had nuth ahonduned mpititical mechists for calnienting he letag of ohomwith (See Schiuer-gewist
 "Rush hushama")
hiomonth was to herm mar thim 30 not ecroithal never nume inimi 8 not hers him 4 sorlamo in $1 y n$. (Grachim 11.2) Cloulywnchír aruite not partprue the teagining of a new mount thy morethin I da.
Tismu, was one of the sis montito, the Cimmenement of whiets wis sticce Amamiees by shess inequss firom-

WWa Theuthemiahua was sumpiers is man one of tho two months in whirh the withises coming rïth newofeche newnusu meses secounde eop offone The dikleazh. Surne lines broozus Winc iveed tieffarvin nicancu fows of the ineanquikitin of the new mo at Her. (Ron 台解umi,4)
To intercalation could bi mule dawn to inieg of Rakhi Gastum * RabkiO Oafino
 beffars thefensh of Piwnimi (ladar or (Badedur 14) Do the day ff fipassume waved bithruwn with parsilke eviar of iday, at leas-tamo beifar thant (Here air refercuees in Dishinaand doseptet to dilimatione in Dankeitivin as it whoter an
intucalutivn ohumal lan momec, and evru a pirmis ional unllex for an
 Queld nuthefrocout worken in was rieasany to equer to a of eirim.

Lu (Slavanic Enoch XVT, 5.8) is a Deseriplewin of the Envar yannawd of the mitetics pans cyele. tor infur ithat of gus uf fot firs evilusing A
 Lutine, ir nitioh cinee it wo highly

 Thicio no enictince thif, over of

 f.K. Sthuinginm alas P_{w} an ant on

Calligho is frumuen fior his 76 yunió lumi-sximr oy ce, -iach ynu of which-ins an arnage of 365 dmy 6ofin.
"Hiveis a quesoiven, which wa huver notsuffficiut eviduce to avisiow whither the gneinin Qaemeirmens intimduced outhe thop fancian ar. with ron of rioh $4 t B 0$. In uthen ense tho date seleiter forthe newvian Tray huve baran gavained by thinisex. The rrasa new nitwiten the
 huver al cuaturd for-tho, of ward hine vew aviztior neav veerem ou Mack/"
g K d uthuninghemin
"Formatining th fulime Creman " 6991 "gaunigolilology valex -1904

1. Mr. Wood derives the date of the New Moon in March 31 A. D. by using as a starting value the actual date of the New Moon of Thursday, March 19.33 (G.C.T.), 1931. It should be kept in mind that periodic inequalities in the Moon's orbit may retard or advance the actual date of New (or Full) Moon by as much as a half a day. Thus, the date of the New Moon found by this method may be in error byithis amount. It would require a much more elaborate calculation to eliminate this uncertainty.
2. The date of the Vernal equinox for the year 1931 is Saturday, March 21.59 (G.C.T.),1931. This is 1.40 earlier than the date used by Mir. Wood. (See American Ephemeris for year 1931, p. 678)
3. The length of the synodic month and of the tropical year as used by Mr. Wood are sufficiently accurate for the purpose. It would be more accurate to use for the interval of 1900 years from 31 A.D. to 1931 A.D. the average length of the synodic month: $\times 2350429.53058846=693965.8248$ $" \quad " \quad " \quad$ " tropical year: $\times 1900365.242304=\begin{gathered}693960.3796 \\ 8.4512\end{gathered}=$ 4. For dealing with so long intervals of time it is advisable to $8^{\alpha}-10^{h}-49^{m} \cdot 7$. use of the Julian Day numbers, given in the American Ephemeris for the year 1931,p.759. As it is customary to begin the Julian Day at Greenwhich Mean Noon, whereas the G.C.T. is counted from Greenwich Mean Midnight, it is necessary to subtract $0{ }^{d} 5$ from a date given in G.C.T. before finding its Julian Day number. And in order to convert a Julian Day number to G.C.T. Od 5 should first be added.
4. Making use of the data given above I find:

Vernal equinox, Saturday, March.21,59,1931(G.C.T.) $=$ J.D.2426422.09 1900 tropical years $=99137$ weeks +1.38 vernal equinox 31
$\frac{693960.38}{1732461.71}$

The Julian Day number for Jan. O.5 (G.C.T.) of A.D. 31 is (American $=W$ Ephemeris,1931,p.759)

$$
1732380
$$

Date of vernal equinox 31 A.D.Jan. $0.5+$

$$
81.71
$$

$$
=31 \text { A.D., Friday }
$$

$$
T=\because 7
$$

New Moon 1931, Thursday, March 19.33 (G.C.T.) = J.D. 2426419.83
23500 Synodic Months $=99138$ weeks +2.83
New Moon
Julian Day number of Jan. 0.5 (G.C.T.) for A.D. 31

$$
=\text { J.D. } 1732451.00
$$

New Moon
31 A.D. Jan. 0.5 +

$$
=31 \text { A.D. Monday }
$$

Full Moon 31 A.D. Tuesday

$$
\begin{aligned}
& \text {.- March } 27 \underset{\sim}{\text { d }} 27 \\
& 82.21
\end{aligned}
$$

DIRK BROUWER

$$
\begin{array}{r}
242642 \%, 05 \\
38 \\
\frac{.21}{.37}
\end{array}
$$

Sincy Binit vol 3/890
Chiiztins Ponhiviraciluato firma form of Luserea $(a \theta 271)$ mwardo docuselithe pos
 Enninnoctial bivint, aude of semetinico plneing the Paschac fuec main ferfure it r it io pwsoible thit IM the timis of Phist the wthof gisom roigh R-hmu frum asfm Kinelc no Mmarl 1 Pornhle $14^{2 / P r a c h a t m a t a n ~ C h . ~ P a l . ~}$ 2. $14^{\prime \prime}$ - Costrinnewomn 3. CD 28 - Sut $m_{m \times 2} 27$ 29. $\operatorname{lom}_{\text {min }} \operatorname{mav}_{17}$

30 2neo apurt
31 Sut nurni.4 zz Snt Maniz 33 ro as 1

28	29
marn 7	19
amil	18
aps	2
25	2.7
12	14
$1-2$	$3-4$

19 eo - $\operatorname{man} 20.33$
1901 - Muw 20.58
1902 - mur 20.83
190 名 - 21.08
1904-. 20.33
OV - . 20.58
06 - " 20.83
07 - 21.04
08 - $\quad-20.29$
09 - 20.54
$10 . \quad$ - 20.79
$11-21.04$
12 -..20-6.21
$13-420-12-1020.650$
$14-120-18-03 \quad 20.752=245$
15 - $20-234320.988$. 4611
16 - $20-10-4720.449 \quad .461$
17 - $\quad 20.16-38 \quad 20.693-244$
$18-\cdots 20-22-26 \quad 20.935-242$
$19-\quad 21-4-19$
$20-21.180-235-1$
$20-\quad-20-9.59$
$21 \quad-20-15.51$
20.416 \qquad
$20.66-248$.
$23 \quad 420-3-39$
$21.145-236$
24 "20-9-20
$20.389-244-1$
25°

- 26

$$
\because 21-3-13
$$

$\begin{array}{ll}27 & \therefore 21-14-57 \\ 28 & -20-20.45\end{array}$
21.134
$\leqslant \quad \therefore$ \qquad 245
$21.377-20.21 .02$ 20.877-243 247
$2.124-247$
$29 \quad 21-2-35$
$" 21-8-30$
$21.624-21.2 .54-21.124$
$20.864-20 \cdot 8.45-20.364$ - 243
$21.107-20-14-35-20.607$ - 247
$21.354-20-20.30-20.854$

24 Mar Mar 4.03 4.12-2 $4.446 \quad 24.9$ har 5-6

29 gncex

$$
1,92
$$

$$
\begin{aligned}
& G\left\{\begin{array}{l}
0 \\
u
\end{array}-20.65\right. \\
& H\left\{\begin{array}{l}
0 \\
u
\end{array}-\frac{-1.6}{18.6}\right.
\end{aligned}
$$

$29 \operatorname{lng} 1.92$

$$
\begin{aligned}
& G\left\{\begin{array}{l}
0 \\
u
\end{array}-21.3\right. \\
& H\left\{\begin{array}{l}
0 \\
u \\
\frac{u}{1}-\frac{-2.1}{19.2}
\end{array}\right.
\end{aligned}
$$

$(29=9 f) \begin{gathered}1.92 \\ 27.81\end{gathered}$

$$
G\left\{\begin{array}{l}
D \\
H
\end{array}-24.0\right.
$$

$$
4\left\{\begin{array}{l}
D \\
\underline{L} \\
I
\end{array} \frac{-2.5}{21.5}\right.
$$

$$
\begin{aligned}
& G\left\{\begin{array}{l}
0 \\
u-26.7
\end{array}\right. \\
& A\left\{\begin{array}{l}
0 \\
4 \\
5
\end{array}-\frac{-2,4}{24,3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
\text { II } & 703 & & \\
005 & 703.601 & 250.05 & 109.4 \\
731 & 1362.998 & 263.62 & 176.4 \\
\hline 736 & & .644 & .64 \\
A\left\{\frac{5}{I I}\right. & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
28.259 \\
\hline 28.0263
\end{array}
\end{aligned}
$$

29 200 0
27.92
$G\left\{\begin{array}{l}0 \\ L\end{array}-28.5\right.$ $\begin{aligned} & H\left\{\begin{array}{l}0 \\ k \\ L\end{array}-\frac{-1.8}{26.7}\right.\end{aligned}$

$$
\begin{aligned}
& \begin{array}{ccccccc}
1.92 & 311 & 005 & 703.601 & 250.05 & 109.4 \\
& 38.14 & 9.56 & \frac{135}{7} & 49.658 & 49.16 & 184.2
\end{array} \\
& G\left\{\begin{array}{l}
0 \\
k
\end{array}-24.6\right. \\
& H\left\{\begin{array}{l}
0 \\
u_{I}
\end{array}-\frac{1.9}{25,5}\right. \\
& \text { A \{2 - . } 019 \text { —. } 36
\end{aligned}
$$

$$
\begin{aligned}
& 9\left\{\begin{array}{l}
0 \\
H
\end{array}\right. \\
& H\left\{\begin{array}{l}
D \\
\frac{U}{I} \\
I
\end{array}\right. \\
& A\left\{_{2}^{1}-.072 — .44\right.
\end{aligned}
$$

30円uN1 1.92
7
311
99
410

$$
\frac{.026}{22.843}
$$

30 ming

$$
\begin{aligned}
& 0.05 \\
& 459 \\
& 464
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
\pi & 7 & & \\
\frac{\pi}{025} & 703.601 & 250.05 & 1091 \\
378 & 138.230 & 136.46 & 188.9
\end{array} \\
& A\left\{\begin{array}{l}
1 \\
2
\end{array} 1384-.69\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { G\{种-20.8 } \\
& H\left\{\begin{array}{l}
0 \\
\frac{y}{t}-+\frac{3.0}{23.8}
\end{array}\right. \\
& \begin{array}{ll}
1.92 & 311 \\
28.45 & \frac{243}{\sqrt{54}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
\pi & 7 & & \theta \\
005 & 203.601 & 250.05 & 109.4 \\
\frac{297}{302} & 108.701 & 107.35 & 187.3
\end{array} \\
& 4 \frac{1}{2 I}-.202 \quad .57
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
22.869 \\
.026
\end{array}
\end{aligned}
$$

$2, m n i$

$$
30.87
$$

949
1048,553 118.113
$\frac{323}{1272}$
A\{ 2
$B\left\{q_{9}^{2} \frac{.375}{1167.059}-\frac{1.48}{349.06}\right.$

$$
\frac{1155.026}{12.033}
$$

304,2

$$
G\left\{\begin{array}{l}
D \\
u
\end{array}-21.2\right.
$$

$$
H\left\{\begin{array}{l}
0 \\
u \\
I
\end{array}-\frac{+9}{22,1}\right.
$$

$$
\begin{aligned}
& \frac{349.1}{6646} \\
& \frac{360}{3046}
\end{aligned}
$$

$$
\begin{aligned}
& 31 \text { may } \\
& 31 \text { Inve } \\
& G\left\{\begin{array}{l}
0 \\
u-19.2
\end{array}\right. \\
& H\left\{\begin{array}{l}
0 \\
\frac{4}{1}-\frac{ \pm 3.1}{24.3}
\end{array}\right.
\end{aligned}
$$

$3 \log , 2$
10.9

$$
\begin{aligned}
& \text { (A8272464) } \frac{25.24}{27.16} \\
& 192-311-205-703,601-250105-1094 . \\
& 25,23-\frac{374}{685}-\frac{225}{230}-447.555-81.31-127.9 \\
& G\left\{\begin{array}{l}
Q \\
\mu
\end{array}\right. \\
& H\left\{\begin{array}{l}
Q \\
u_{I}
\end{array}-\frac{+9}{22.9}\right.
\end{aligned}
$$

CH 28 mav.

$$
\begin{aligned}
& G\left\{\begin{array}{l}
0 \\
L_{u}-21,4
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
1.92-311-005-703.601-250.05-10414 \\
26.28-\frac{307}{618}-\frac{276-831.451-199.70}{281} 148.2 \\
21,4-126-1.09
\end{array}
\end{aligned}
$$

$\mathrm{CO} 21 . \mathrm{mm}$
1otory Mur 16-17 142 Mar 30

Dine givess for quennuit Civie Dime.

$$
\begin{gathered}
\text { Suygituss Derusalun }-()^{0}-\quad 2 h_{0} 21 \text { min } \\
-9
\end{gathered}
$$

Fios Rijuse Dehranio navilueow G.C.T. sointatcor: gi-Gman Secoud " $\because \quad \because . \operatorname{GenCT}$ with
Thisd " Dofuohs ".
(vonus dathes -

$$
21
$$

Ces. 29. Mar. NM.

$$
1721760.49
$$

$$
10669.93
$$

182	2
307	$\frac{228}{230}$

$$
\begin{array}{r}
.83 \\
7731831.35
\end{array}
$$

$$
1721760.49
$$

$$
1009 \% 46
$$

$$
\begin{array}{r}
.77 \\
\therefore 04
\end{array}
$$

$$
\frac{125}{210} \frac{26}{330} \frac{260}{262}
$$

$$
173 / 860 \div 6
$$

1721760.49

10128.99	$\frac{239}{364}$	$\frac{292}{244}$
1731890.12		
1721760.49	125	2
10158.12	$\frac{268}{36}$	$\frac{325}{327}$

$\frac{.02}{1731919.51}$
1721760.49

$$
\frac{128}{296} \frac{25}{321}
$$

$$
\begin{aligned}
& 1721760.49 . \\
& 990 \% 81 \\
& .38 \\
& \begin{array}{cc}
a & 6 \\
125 & 2 \\
67 & \frac{98}{192}
\end{array} \\
& 173 / 7 / 3.03 \\
& \begin{array}{rrr}
1721760.49 & 1.25 & 2 \\
9981.34 & \frac{96}{138} & \frac{131}{133}
\end{array} \\
& \begin{array}{r}
33 \\
\hline 1731742.74
\end{array} \\
& \begin{array}{rrr}
1721760.49 & 120 & 2 \\
10010.87 & \frac{124}{249} & \frac{163}{16 v}
\end{array} \\
& \frac{126}{1731772.36} \\
& \text { 1721760.49 } \\
& \begin{array}{rrr}
20760.49 & 125 & 195 \\
10040.40 & 153 & \frac{195}{197}
\end{array} \\
& \begin{array}{r}
1781802.00
\end{array}
\end{aligned}
$$

$$
\because 3
$$

1731713.03 Már H.O3. GC.T.

$$
\frac{.092}{122}
$$

1731742.74 Afor 2.74
1731772.36 772xy 2.36
1731802.00 Inne 1.00
1731831.35 fime $30.8 V$.
1731860.76 guby 29.76
1731890.12 ang 28.12
1731919.57. Sept 26.57.
1731948.92 Cef 20.92

$$
\begin{aligned}
& \begin{array}{rrr}
332.45 & 394 & 379 \\
177.18 & 172 & 194 \\
1.24 & \frac{176}{566} & \frac{573}{} \\
\hline
\end{array} \\
& 1721054 \\
& \text {-510.09 May } 10.09 \\
& \begin{array}{rrr}
332,45 & 394 & 379 \\
206.71 & \frac{201}{40} & \frac{222}{140} \\
1695 & 605
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{rrr}
332.45 & 394 & 379 \\
236.24 & 229 & \frac{2 v 9}{} \\
054 & -623 & 638
\end{array} \\
& -\frac{108}{-569-3.6} \\
& \text { - } 569,36 \text { grey } 8.36 \\
& 332.45 \quad 394379 \\
& \begin{array}{r}
265.78 \quad \frac{258}{65} \frac{291}{652} \\
-599.02
\end{array} \\
& \text { - } 332.45 \quad 394379 \\
& \begin{aligned}
& 295.31 \frac{287}{681} \quad \frac{323}{702} \\
& 180
\end{aligned} \\
& -628.59 \\
& \begin{array}{r}
332.45 \\
324.84 \\
.835 \\
658.14
\end{array} \\
& -628.59 \text { Sept r.s. } \\
& -658.4 \text { Och 5-1 } \\
& \begin{array}{rrr}
-332.45 \quad 394379 \\
304.37 & 344
\end{array} \\
& \begin{array}{r}
356 \\
-6.084
\end{array} \frac{344}{738} \frac{388}{767} \\
& \begin{array}{rrr}
332,45 & 394 & 379 \\
383.90 & \frac{373}{675} & \frac{20}{36} \\
17 & &
\end{array} \\
& =\frac{17}{-717.14} \\
& -687.66 \text { Koc } 3.66 \\
& -717.14 \text { JEe } 3.14
\end{aligned}
$$

$$
29.1
$$

$1673342=4=27 \sqrt{E} \quad 16733.42$ $9745.09-266 \frac{272}{579}$
$\frac{130}{25479.62}$
$\frac{62}{1-7.62}$
$\frac{248}{248}$
$\frac{124}{1494}$

16733.42
9804.16
14.86
$16733.42-4-275 \frac{216}{208}$
$9833.69-\frac{324-337}{328-612} \frac{1086}{1296}$
$\frac{1.94}{5768.04}$
$\begin{array}{r}16733.42 \\ 9833.69 \\ -45,00 \\ 10 \frac{1}{4} \\ \hline-582.14\end{array}$
16733.42
9774.62 14.88
$\frac{.27}{4.93 .59}$
$\frac{118}{523.02}$
93
30.02
$\frac{24}{.48}$
2880

$$
\begin{aligned}
& 16733.42-4275 \frac{54}{28} \cdot \frac{14}{24}
\end{aligned}
$$

$$
9833.69-\frac{352}{356}-\frac{369^{2}}{644}
$$

4
\vdots
\vdots
0
0
0
0
1
$\frac{204}{96}$
$\frac{16733.42}{9833.69}$$\quad \begin{aligned} & \frac{352}{356}-6449^{2}\end{aligned}$
16733,42
$9863.22-381$$\frac{545}{13}$
$9863.22-\frac{381}{102}-\frac{1}{275}$
102

-6519
43.27
227

$$
\begin{aligned}
& \begin{array}{rr}
-332.45 & 394 \\
413.43 & \frac{279}{2} \\
.46 & 396
\end{array} \\
& \frac{.26}{-746.60} \\
& -746.60 \\
& \text { gami.6o } \\
& \text { - } 332.45 \quad 394 \quad 379 \\
& \begin{array}{r}
442.96 \\
.30
\end{array} \frac{30}{424} \frac{85}{464} \\
& -776.02-776.02 \quad-76 \\
& \begin{array}{lll}
-332.45 & 394 & 379 \\
472.49 & .59 & 119
\end{array} \\
& \begin{array}{r}
472.49 \\
\quad 155 \\
=-80504
\end{array} \\
& -332.45 \quad 394 \quad 379 \\
& -805,44 \\
& \frac{.2 b 28+4}{28+532} \\
& \text { - } 834.86 \quad \text { Knoh } 29.86 \\
& \begin{array}{rrr}
-332.45 & 394 & 374 \\
531.65 & 116 & 182 \\
.03 & 510 & 551
\end{array} \\
& \frac{130}{-864.33} \\
& -86433 \text { Apr } 28.33 .
\end{aligned}
$$

$$
\frac{\text { RANSLA LONFORNONI }}{\text { PJSTULETE1 }}
$$

$$
\frac{\text { DCSBHE SOCHI ON NISAN } 13}{\text { JERUSALEM CIVIl TIME }}
$$

OPPOSITION
Pa． NEW MOONS ar． $1313^{h} 14^{\mathrm{m}} \mathrm{Th}$ FULL MOONS

（u nz 2 －58：Sa
（last）Aprol4！1 $39^{\mathrm{m}} \mathrm{M}$

CRUCIFIXION
$202223^{h} 12^{m} \mathrm{~W}$
（int）Apr． $620^{\mathrm{h}} \mathrm{g}^{\mathrm{m}} \mathrm{Th}$

$221015^{\mathrm{m}} \mathrm{S}$
（isl）Apr． $1712^{h} 1^{m} 2 v$

果

Apr． $2712^{h} 23^{m}$ Tu．

$$
\sum_{1,1^{2} 35^{n+}}^{i}
$$

The new and full moons were computed from Schram＇s Tables by Glenn Draper， Associate Astronomer，U．S．Naval Observatory．
© General Conference Corporation of Seventh－day Adventists

FIFTH CENTURY B.C. MOONS AND INTERVALS -- TABIE VII
(Jerusalem Civil Time)

B.C.	Conjunction	1 Nisan	Day of Weak	Tr. Period (Days)	Full Moon	14 Nisan	Waxing Poriod (Days)	Year Length (Days)
500	Apr 19.45	Apr 23	Thur	3.32	May 4.96	May 6	15.51	
499	Apr 8.96	Apr 12	Mon	2.81	Apr 24.35	Apr 25	15.39	
498	Mar 29.65	Apr 1	Fri	2.10	Apr 13.43	Apr 14	14.78	
497*	Apr 16.68	Apr 19	Thur	2.09	Apr 31.10	May 2	14.42	
496	Apr 6.27	Apr 8	Mon	1.50	Apr 20.24	Apr 21	13.97	
495	Mar 26.61	Mar 28	Fri	1.14	Apr 9.66	Apr 10	14.05	
494*	Apr 14.38	Apr 16	Thur	1.44	Apr 28.61	Apr 29	14.28	5
493	Apr 2.34	Apr 5	Tues	2.43	Apr 17.32	Apr 18	14.98	4
492*	Apr 21.07	Apr 24	Mon	2.71	May 6.38	May 7	15.26	5
491	Apr 10.38	Apr 14	Sat	3.39	Apr 25.92	Apr 27	15.54	
490	Mar 30.95	Apr 3	Wed	2.82	Apr 15.20	Apr 16	15.25	4
489*	Apr 17.98	Apr 21	Tues	2.79	M*y 2.91	Mey 4	14.93	-354
488	Apr 7.68	Apr 10	Sat	2.09	Apr 21.93	Apr 28	14.25	-
487	Mar 28.20	Mar 30	Wed	1.56	Apr 11.13	Apr 12	13.98	
486*	Apr 16.03	Apr 18	Tues	1.74	Apr 30.00	May 1	13.97	
485	Apr 4.14	Apr 6	Sat,	1.68	Apr 18.62	Apr 19	14.48	
484	Mar 24.17	Mar 27	Thur	2.59	$\mathrm{Apr}^{8.33}$	Apr 9	15.16	
483*	Apr 11.92	Apr 15	Wed	2.85	Apr 27.82	Apr 28	15.40	
482	Apr 1.32	Apr 5	Mon	3.45	Apr 16.82	Apr 18	15.50	885
481*	Apr 19.28	Apr 22	Sat	2.49	Mey 4.63	May 5	15.35	
480	Apr 8.99	Apr 11	Wed	1.78	Apr 23.71	Apr 24	14.72	
479	Mar 29.64	Apr 1	Mon	2.12	Apr 12.75	Apr 14	14.11	-383
478*	Apr 17.58	Apr 19	Sat	1.19	May 1.52	May 2	13.94	-365
477	Apr 5.90	Apr 8	Thur	1.87	Apr 19.97	Apr 21	14.07	
476	Mar 25.95	Mar 28	Mon	1.81	Apr 9.62	Apr 10	14.67	
475*	Apr 18.64	Apr 16	Sun	2.13	Apr 28.63	Apr 29	14.99	
474	Apr 2.80	Apr 6	Fri	2.97	Apr 18.30	Apr 19	15.50	4
473*	Apr 20.68	Apr 24	Thur	3.10	May 6.21	May 7	15.53	-354
472	Apr 10.27	Apr 13	Mon	2.50	Apr 25.48	Apr 26	15.21	-
471	Mar 30.98	Apr 2	Fri	1.78	Apr 14.52	Apr 15	14.54	
470*	Apr 18.99	Apr 21	Thur	1.78	May 3.20	May 4	14.21	
469	Apr 7.51	Apr 9	Mon	1.26	Apr 21.42	Apr 22	13.91	
468	Mar 27.73	Mar 30	Sat	2.03	Apr 10.94	Apr 12	14.21	-884
467*	Apr 15.42	Apr 18	Fri	2.35	Apr 29.98	May 1	14.51	-684
466	Apr 4.45	Apr 7	Tues	2.32	Apr 19.65	Apr 20	15.20	
465	Apr 22.21	Apr 25	Mon	2.57	May 7.63	May 8	15.42	
464*	Apr 11.63	Apr 15	Sat	3.14	Apr 27.11	Apr 28	15.48	
463	Amr 1.29	Apr 4	Wed	2.48	Apr 16.32	Apr 17	15.03	-884
462*	Apr 20.30	Apr 23	Tuen	2.47	May 4.99	May 6	14.69	-854
461	Apr 8.96	Apr 11	Sat	1.81	Apr 23.04	Apr 24	14.08	-354
460	Mar 29.40	Mar 31	Wed	1.36	Apr 12.34	Apr 13	13.94	-354
459*	Apr 17.18	Apr 19	Tues	1.59	Apr 31.27	May 2	14.09	884
458	Apr 6.23	Apr 9	Sun	2.54	Apr 20.95	Apr 22	14.72	
457	Mar 25.31	Mar 28	Thur	2.45	Apr 9.64	Apr 10	15.38	-884
456*	Apr 13.12	Apr 16	Wed	2.65	Apr 28.61	Apr 29	15.49	-855
455	Apr 2.61	Apr 6	Mon	3.16	Apr 18.08	Apr 19	15.42	855
454*	Apr 21.59	Apr 25	Sun	3.19	May 6.77	May 8	15.18	
453	Apr 10.31	Apr 13	Thur	2.46	Apr 24.81	Apr 26	14.50	
452	Mar 30.92	Apr 2	Mon	1. 85	Apr 13.91	Apr 15	13.99	
451*	Apr 18.82	Apr 21	Sun	1.95	Mey 2.73	May 4	18.91	-354

The asterisk (*) marks the years with a leap month.

FIFTH CENTURY B.C. MOONS AND INTERVALS -- TABLE III (Jerusalem Civil Time)

[^23]
[^0]: 1 Wars II. $1,3$.
 2 Wars II.if.5.
 8 Ibid.
 4 Phis Vol VIT De [Classical Lib.
 (Ant. XVII.1x.3.

[^1]: 7 Philo, Volume VII, Special Laws II.xrvii.148,149. Tr. by Colson. Loeb Cliotical Library.
 Ant. If. -. S. Loeb Classical Library.

[^2]: 9 Edward Freiherrn von Haerdtl, "Astronomisohe Beitrage as syrischen Chronolugie," Denveohrifton ter kaiseriiohen Akademie der Wissenschaften nathematisohnaturwissenschaftliche Classe. 49. Band. Wien, 1885, 164. $10 \mathrm{C} \cdot \mathrm{W} \cdot \mathrm{C}$. Barlow and G.H. Bryan, Elementary Mathematioal Astronony. London, 1934, 106.

[^3]: 11 Ant. XI. IV. 8.
 12 Wars VI.1x.3.

[^4]: IS Philo, Volume VII, Special Laws II.xavii.146. Tr. by Colson, Harvard Uni \rightarrow Fersity Press, 1937. Loeb Classioal Library.
 19 Philo, Volume VI, De Vita Mosis XLI. 224, 228. Loeb Classioal Library.

[^5]: 21 Ex. $12: 27$
 22 Journel of Eiblical Literature, Vol. LXIII, Part II, 1944, 183, 183.
 23 Philo, Iत., XVIIT.155. Loeb Clasaioal Library.
 24 in the reason of Tabernsoles, both setting sun and rising moon course so low against the horizon that for several evenings together the full moon rises with very littlo difference of time.

[^6]: 1 B.Jud.II.I.3; Ant.IX.XIII. 2,3 , etc.
 2 Greswell, Edward, "Dissertations upon the Harmony of the Gospels," vol.I, p. 71. Oxford, $=830$. Soaliger, Joseph, "De Enondatione Tomporm," p. 105. Franoofurt, 1593. 4 White, E.G., "Acts of the Apostles," pp. 390, 391.
 5 So spelled in the original Greek.

[^7]: ${ }^{\theta}$ Eusebius Pamphilus, "Ecclesiastical History," p. 223. Tr. Cruse. London, 1847. 7 Nicephori Callisti; "Eoolesiasticae Historian," lib. XII, P. 292. Paris, 1630.

 8 Migno, J.P., "Patrologiae," SL Cursus Completus, tom. IXVII, col. 470. 1848.
 9 Dionysii Petavii, "Animadrersiones Epiphani1 Opus," p. 195.
 10 For examplo. Theophilus and Ambrose. (Aegidil Buoherii, Do Dootrina Temporum, " pp. 478, 477. Arctorpiae, 1634.)
 11 Migne, tom. LXVII, col. 476 (a).
 12 Ibidem, col. 459. (First full moon after the vernal equinot.)
 15 Ibidem, col. 952.

[^8]: 14 Ibidem, 001. 952.
 15 Ibidem, 467.
 16 Ibidem, oci. 466.
 17 Michaolis, Joln Davie, "Nissortation on the Hebrew Months," London, 1773.
 exth regth leaders of the "seventh month" movement. He was onegof the firat to doubt that the modern Jewish months are correct as to thoir \wedge seasons.)

[^9]: 24 . Cr. September number of The Ministry.
 25 "Patriarohs and Frophets," p. 352. Confliot of the AgesSeries. 26 Ibidem, ${ }_{2} \cdot 353$.
 27 Hinivens phractice ainong ihe Samavilans and Falashas stils slays the paichal lamb 28 nAnoiont Jewish Calondation," Journal of Biblioal Litorature, p. 251. Vol. LXI, Part IV. December, 1942.

[^10]: 24 Cf. September number of The Ministry.
 25 "Patriarohs and Frophets," p. 352. Confliat of the AgesSeries. 26 Ibidem, p. 353 .
 27 Univenhas peractice amongi he Samavitans and Falashas sties slays che farchal lamb 28 nanoiont Jowish Calondation," Journal of Biblioal Litorature, p. 251. Vol. LXI, Part IV. December, 1942.

[^11]: 19 Dalman, Gustaf Hermann, "Jesus-Jeshua," pp. 88,92. Tr. by Levertoff. N. Y. 1929
 20 Mark 6:39
 21 Matt. 14:13-21
 22
 Kitto, John, "Palestine," pp. 24,43
 23
 Canticles 2:11

[^12]: 65 Philo, "Life of Moses," book III, p. 284. Tr. by Yonge. London, 1855. 66 Idem, p. 121.
 67 Idem, p. 171 (Italics mine.)
 68 Ezra 6:20
 692 Chron. 30:17
 $70 \mathrm{~F} \%$. $13: 12$

[^13]: Josephus, "Antiquities," xvii.9.3.
 Josephus, "Wars," II. 2.3. 77

 Idem.

[^14]: 782 Chron. $35: 16$
 $79_{\text {Num. }}$ 9:10,11
 80_{2} Chron. $30: 17$
 82^{2} Chron. 30:18
 82
 John 11:55
 83
 Dan. 9:26,27

[^15]: 84 Luke 22:14
 th 85 finfe noon.
 86 Philo Judaeus, "Life of loses,"III, p. 291. Tr. by Yonge. London, 1855.

[^16]: 89 Bucherii Aegidii, "De Doctrina Temporum," p. 374. Antverpiae, 1634. 90 Idem.

[^17]: 91 Glonn H. Draper, Associato Astronomer; U.S. Naval Observatory, Washington, D.C.

[^18]: *The asterisk maris the years having a Veadar spring. Conjunction and Full Moon dates taken from Ginzel's "Chronologie."

[^19]: 4 Cf. table V on page 38° for the length of the moon's course.
 $5 \frac{\text { Midnight Cry, April } 20,1843, ~ p .20 . ~}{\text {. }}$
 Hales, "New Analysis of Chronology," London, 1830, Vol. 1, p. 67. ${ }_{8}^{7} \mathrm{p} .37$ p. 36

[^20]: 9 See Part II, Secs. VI, IX, and XII.
 10 Lev. 23:27; 25:9.
 11 Oct. 31, 1844, p. 141.

[^21]: 1 Young: "Astronomy," po 155.
 Geminus. "Elementa Astronomiae " pol 2110

[^22]: * The asterisk marks years having an intercalary Veadar parurkusar
 ** Jewish reckoning of the days of the week. The decimals . 93 and . 94 correspond to about 10:30 pom., and hence m new day that had begun in Jewry.

[^23]: * The asterisk marks the years having a Veadar spring. The

 Assuan papyri are designated by letters in the left margin.

