Soles Pertaining Lo
RECONSTRUCTION OF MOSAIC SACRED CALENDAR (Inseparably tied to -berley, wheat, and vintage harvests) I, Problem not Solvable by Modern Jewish Calendar II Xubutan Restomedonotginal Mossio Galendetton
HII, True Mosaic First Month \qquad
III巩隼 Order of Ancient Hebrew Months IV. Passover Followed Day of Full Moon in Jewry Wt Length of Ancient Hebrew Year.

Tref translation Period of the Moon.
V, Principles Governing Moon's Phasis
TR Tables Employed

PI, Queirent Psexrew Year

I Modern Jewish Calendar of Little Use to Problem
(1) Months out of Agreement with Mosaic Feasts
"For those feasts which Moses commanded to be celebrated in the first, third, and seventh month, do not agree with Maroh, May, and September, in the climate of Palestine." -- Michaelis, Joanne Davide, "Commentationes De Mensibus Hebraeorum," p. 17. Bremae, 1764.
(2) Rabbinioal Caloulation Excludes Friday Passovers
"Therefore passover frequently falls two complete days later than the real opposition -- one day in consequence of the Equations, another day in consequence of their postponing passover from a Diesilicita. [Monday, Wednesday ore Friday] to a Dies licita."-- Albirunņ̂, "The Chronology of Ancient Nations," p. 144. Tr. by Sachau. London, 1879.
(3) Rabbinical "Postponements" Not int Use in First Century
"From numerous passages of the Mishna, the Babylonian Talmud, and Jerusalem Talmud, it is evident that prior to the destruction of Jerusalem in 70 A. D., no day of the week was excluded from the oalendar for the fixation of the lst of Tisri."-- Sidersky, David, "Etude sur l'origine astronomique de la ohronologie juive," in "Mémoires présentes par divers savents à l'Académie des Inscriptions et belles-lettres de I'Institut de France," p. 660. Paris, 1913.
(Years
(4) Modern Jewish Year Has Greater Variations in Iength than lst Century
"In the modern Jewish oalendar greater variations are found in the lengths of the ordinary and embolismic years, respeotively, especially the ordinary short year of 353 days, and the abundant embolismic year of 385 days, issues of the system of postponements [dehiyoth], inaugurated later by the Jewish doctors of Babylon, but which did not yet exist in the first century."-- Sidersky, Idem, p. 633.
Mrue Mosaic First Month
(1) Moses Gave Israel are "Agricultura. 1 "Year/ in Hore Aocunate then Egyptian "Naw this is preoisely what Moses did. He had it not in his power to adopt a strictly astronomical solar year, and thereby to correct the irregularities of the lunar year; but he availed himself of the aid of an economical solar year, which never admitted an error of a whole month Without correcting it, and which every husbandman could easily compre-hend."-- Michaelis, "Commentaries on the Laws of Moses," p. 206. Tr. by Smith. London, 1814.

$$
\begin{aligned}
& \text { * "The mathematicians, therefore, computed for them, the oycles, and taught them } \\
& \text { how to find, by calculation, the conjunctions and the appearance of new } \\
& \text { moon. . This reform was brought about nearly } 200 \text { years after Alexander (c.112 B.C.). } \\
& \text { Before that time they used to observe the Tekufth (Aibip nit), i.e. the } \\
& \text { year-quarters."- Albîunî, "Chronology of Ancient Nations," p. 68. }
\end{aligned}
$$

Wave

(2) Agreement of Lunar and Solar Year Secured by Barley, Sheaf
"Now, while the Israelites continued in the land of Canaan, the agreement of the lunar and solar years was thus secured:- $-0 n$ the second day of the Passover, which was the 16th of the first month, (Abib or Nissan) an omer of the first fruits of the ripe grain was required to be offered to the Lord (Lev, $23: 10,11$). When the last month of the eoolesiastical year, i.e., Adar, had arrived, therefore, and it was discovered from the baclowardness of the season, dependent upon the revolution of time, that the grain was not sufficiently ripened for the offere ing, an extra month called Adar Sheni or Veadar, ioe, the second Adar, was introduced, and the Passover thus observed 'in its proper season." This interoalary month would be required to be employed sometimes every second, and sometimes every third year. There were other causes besides the one already stated for the interoalation at the Passover period:thus, the lambs must have grown sufficiently for the Passover sacrifices; and it became necessary to allow time for the ripening of the wheat, so that the two loeves offered as the first fruits of their wheat-harvest could be brought on the feast of Weeks; again, that the produce of the field might be gathered in, as required, before the arrival of the feast of Tabernacles. The 15th of Nissan, then, could not be observed as the first day of the Passover, if it occurred before the vernal equinox, but an interoalation was made by which its observance, and, consequently, that of the other festivals, would be deferred. Such was the system observed during the Israelites stay in Canaan." -- Jacques Lyons and Abraham De Sola, "A, Jewish Calendar," p. 16. Montreal, 1854.
(3) Mosaic First Month Known as the Ear-Moon
"The first moon', which nearly corresponds to our April, Moses does not denominate Nisan, the name which it bears among other among obier Oriental nations, and even in Hebrew, but he gives it a name which includes a definition, alling it Abib (), or the Ear-moon, deolaring it to be the first month of the year."-- Michaelis, "Commentaries on the Laws of Moses," pp. 206, 207.
"The words hodesch ha-abib usually are translated by 'month of the new grain" or "month of the ears," because the Hebrew word abib is synonymous with ${ }^{9}$ maturity of the corn."-- Sidersky, "Btude sur I'origine astronomique de la chronologie juive," p. 614.
(4) The Sickle Was the Sign of the First Month
"For not in the twelfth month, when the time of winter still hangs on, as I have before said, is the month of new fruits located, the new fruits are not yet and ripe, and since indeed they oannot put the sickles to the harvest. For especially has the divine law constituted this as the sign of the first month."-- Bucherii, Aegidil, "Comentarius De Dootrina Temporum," p. 472. Antverpiae, 1634.
(5) Passover Month Follows March Rains
"The first of these festivals, the Passover, the feast of unleavened bread, occurred in Abib, the first month of the Jewish year, corresponding to the last of March and the beginning of April. The cold of winter was pest, the latter rain had ended, and all nature rejoiced in the freshness and beauty of the springtime. The grass was green on the hills and valleys, and wild-flowers everywhere brightened the fields. The moon, now approaching the full, made the evenings delightful." - White, Ellen G_{\bullet}, "Patriarohs and Prophets," p. 537.
(1) Time from Conjunotion to Conjunation $=291 / 2$ days (29.530588).
"The month of the Jews was, as we have said, a lunar month, and extended from one appearing of the new moon to another. The time elapsing between one astronomical new moon and another consists of $291 / 2$ days. [Always has 29 full days, but the hours and minutes vary.-G. Amadon.] But since the month consisted of entire days, they counted it with pretty regular ailternation as 29 or 30 days. . The Jewish month could never have more than 30 days, and never fewer than 29."-- Caspari, Ch. Ed., "Introduction to the Life of Christ," p. 5.
(2) Two Lunations Count 59 Days.
"On which account they reckon a lunar month to be $291 / 2$ days, but the time of two moons, 59 days; whence they alternately keep a deficient and full month, for the reason that a two-moon period is 59 days. Therefore, in a year there happen six full and six defioient months, and they amount to 354 days: so month after month, they keep full and deficient." -Gemini, "Elementa Astronomiae," p. 35. Interprete Edone Hilderico. In "Uranologion," oura \& studio Dionysii Petavii. Paris, 1630.
(3) Calendar Months Alternate 30 and 29 Days
"Her revolutions, too, will ocoupy thirty days one month, and twentynine the next, and so on alternately."-- Pliny, "Natural History," p. 112. Tr. by Bostook and Riley. London, 1855.
(4) Summer Months an Alternate 30 and 29 Days
"As the six summer months have 30 and 29 days alternately . . ."- Sidersky, David, "Etude sur I'origine astronomique de la chronologie," p. 601.
(5) In actual Praotice 29-and 30-Day Months Alternate "Since the astronomical length of a month is equivalent to 29 days, 12 hours, 44 minutes, 3 seconds (Ideler, Handbuoh der Chronologie, 1. 43), then it must follow that in actual practioe months of 29 and months of 30 days must pretty regularly alternate with one another." "- Shưrer, Emil, "History of the Jewish People," First Division, Vol. II, p. 365.
Note: Shürer also gives quotation from Mishna [Arachin ii.2], which he dates in second oentury, A.D., and from it conoludes that lunar year might vary "from 352 to 356 days gurminis irregular length of the Jewish year might have been possible inseodnd-century period of Roman perseoution against Jews, living in oaves and desolate places, and not allowed to announce feast days. We have records of those times during which three successive intercalary years were ordered by Rabbi Adda ("Hastings Encyrolopedia of Religion and Ethios," Vol. II, art. Jewish Calendar, p. 117). These instances are recorded in Talmud (Sanhedrin, 12a), and plainly show under what diffioulties Jewish oalendation had to operate in the period after the fall of the second temple. Albîrun $\hat{1}$ also hands down the information that the Jews of this time told the Christians lies in order to lead them astray in regard to their methods n They had two systems of reokoning the tekufoth, one seoret, and one commonly known ("Chronology of) Ancient Nations," p.302) (Sidersky, "Etude ahronologie juive," p.624). But these methods of abnormal times could not agree with the an anoient Hebrew system which had been established for 1500 years.
（6）Always a＂Fixed Interval＂Between Nisan and Tisri
＂From Nisan to Tisri are 177 days．But not always from Tisri to Nisan are 177 days in a common year，and neither in an embolismio year are there always 207 days＂＂L－Scaliger，Joseph，＂De Emendatione Temporum，＂ p． 85.
（7）Sequence of Months Ste Motion of Sun and Moon，tr not Cirauma ＂Three months which are perfect according to the appearance of the new moon，can follow each other，whilst of the imperfect months not more than two can follow each other．And their following each other is pos－ sidle only in consequence of the variations of the motions of the two great luminaries（sun and moon），and of the variation of the setting of the zodiacal signs（i．e．the varying velocity with which the sun moves through the various signs of the Ecliptic）．＂－－Albîrunn食，＂Chro－ nology of Ancient Nations，＂p． 153.
＂But not always on days of the same name does the moon make the same configurations，but on different days，according to the inequality of motion．＂－－Gemini，＂Elemental Astronomiae，＂p． 40.

IV Passover，Followed Day of Full Moon in Jewry
K1 Evening of Passah Must Coincide with Full Moon
＂Indeed，we know，that the evening of the Jewish Passah must coincide with the full moon（according to the texts quoted above from Josephus and from Philo）．．Sometimes it can happen that，due to certain cir－ oumstances，the new moon is fixed on the day after the next day of the conjunction，and that the Passover is celebrated 24 hours after the full moon，but the contrary is impossible．＂－－Sidersky，David，＂Etude sur l＇origine astronomique de la chronologic juive，＂p．636．

(5) Scot Heresy (7th Century) Recalls Anatolius re Paschal Moon on I3th "For he [Wilfrid] reproves the Scots because, although they celebrate Easter on the 14th, yet they do not have the plan of the paschal 14th which Anatolius commanded. For he maintained the paschal 14th to be only that which the full moon would overtake in the evening, that is, before sunset, and would moreover be called the 23 th, not the 14 th. " - Petavii, Dionysii, "Animadversiones" in Epiphanii opus, p. 195. Heresy LI. [The main point of controversy at this time was the relation of Easter to the equinox. Hence we get an unadulterated conciusion as regards the position of the full moon on the 13th day of the lunar month.]
(6) Lunar Calendar Day Corresponds to Two Civil Days
"For, in lunar reckoning, each day is not ended at evening by the same number in which it is begun in the morning: since the day whioh in the morning is numbered 13 by the moon, that is to the sixth and a half hour, in the same evening is found to be $14.0^{\prime \prime}$-- Bucherii, Aegidii, "DeDoctrina Temporum," p. 444.
(7) Arabs Call 13th Day of Month "badr" * "The 13th night is called saw \hat{Q} ', the 14 th the night of 'badr,' because in it the moon is full, and her light complete."-- Albîrûní, "Chronology of Anoient Nations," p. 75.
(8) Egyptians Had Speoial Name for 13 th Day of Moon

The anoient kgyptians named each day of the month according to the course of the moon. The 13th day they called the "feast of the bright rising," and the "feast of throwing out light;" the 14 th day was named "the majesty of the ram."-- Brugsoh, Heinrich, "Inschriften altaegyptischer Denkmeler," p. 50. Leipzig, 1883.
(9) Anoient Definition of Full Moon
"She becomes full exactly on the day when the sun sets in the west, and from the east she rises at night, and the moon shines the whole night through till the sun rises over against her and the moon is seen over against the sun."-- "Book of Enooh," tr. by Charles, R.H., "The Apooryphe and Pseudepigraphe of the Old Testament," p. 244, Oxford, 1913.
(10) Pliny's Definition of Full Moon
"But when the moon is seen to rise at suneset and opposite to the sun, so that they are both peroeptibie at the same moment, she will be at full."-- Pliny, "Natural History," p. 112. Tr. by Bostook and Rily. London, 1855.
(11) Passover on Day that was Full of Light
"Again, the beginning of this festival [Tabernaoles] is appointed for the fif'teenth day of the month, on account of the reason which has already been mentioned, respecting the spring season [Passover], also that the world may be full, not by day only but also by night, of the most beautiful light, the sun and moon on their rising opposite to one a with uninterrupted light, without any darkness interposing itself bew tween so as to divide them."-- Philo Judreus, "The Life of Moses," Vol. III, p. 291. Tr. by Yonge. London, 1855.

[^0](12) Lunar Ecolipses at Time of Full Moon in" Middle of Month ${ }^{\prime \prime}$
a. "But these are the configurations, siokle-shape, half full, gibbous, and full. She becomes a orescent around the beginning of the month; half full, about the eighth day of the month; gibbous, about the twelf'th; and full, about the middle of the month."-- Gemini. "Elementa Astronomise," in "Uranologion," p. 39.
b. "But the ecipses of the moon heppon in the nicht which reches b. "But the eclipses of the moon happen in the night whioh extends. toward the middle of the month. For then, according to the diameter, the moon is placed opposite to the sun, and falls into the shadow of the earth." - Idem, p. 33.

Prinoiples Governing Moon's Phasis

(1) Jewish Phasis Usually Larger, and therefore Older than Greoian "But the Jewish, Arabic, and Samaritan new moon conmoniy exceeds the size of the [ordinary] phasis: so that the oivil new moons are of a threefold kind: the Attic, from the conjunction; the Calippio, from the waxing moon [the earliest orescent]; and the Jewish, Samaritan and Arabic, from the shape of the moon from the third day, I say." - Scaliger, Joseph, "De Emendatione Temporum," p. 6e
(2) Jews Commoniy Begin Month from Horned Moon
"The new moon of the first Calippic Hecatomb begins on the 30 th day of the Jewish month Siven, since the Jews begin not only from the phasis, but also from the horned moon. . as I said, the Calippio new moons are from the waxing oresoent, not from the horned moon."-- Scaliger, "De Emendatione Termporum," p. 71.
(3) Moonis Horns Reveal Her Age
"Soan first the horns on either side the Moon. For with varying hue from time to time the evening paints her, and of different shape are her horns at different times as the Moon is waxing -- one form on the third day and other on the fourth. From them thou canst learn touohing the month that is begun."-- Aratus, "Phaenomena," p. 441. Tr e by Mair. London, 1921.
(4) Definition of the Horned Moon
"But we call the horned moon that phasis, which to some of the anozents is the panand maor ear the rac... thet on th. "For in the signs of long settings, namely in Pisces, Aries, and Taurus, it can happen that the first moon can be seen a little after conjunc-tion."-- "Selenographia," p. 274.
yuv nuvauso sho to muv azrayo ause vo ve seen on the secona ary, all those oauses can hinder which do not allow one to see the first moon on the first day after conjunotion. For especially the reason is, that when she is turned about in the signs of short settings, of which kind are: Cancer, Leo, Virgo, Libra, Scorpio, and Sagitarius. For, although the moon may be in Perigee, and about the northern border [of the zodia0], yet if she does not approach a sign of long setting, in vain is the horned moon awaited on the second day."-- Idem, p. 281

[^1]V1 The Ancient It bueno year
(1) June Chimere, gheber for theirs nus year
"The title ap ωv is of very frequent occurrence in the Roman inscriptions. We have already met with it elsewhere, viz. in Antioch, Alexandifia, and Berenice. It also occurs sometimes upon epitaphs found outside of Rome, and we may add that Tertullian classes the priest, Levite, and archon together as Jewish officials (Tertullian," De corona," chap. lx: Quis denique patriarches, quis prophetes, quis levites att sacerdos abut archon, quis vel postea apostolus ant evangelizator ant episcopus invenitur coronatus?). According to all analogy elsewhere (comp, especially Alexandria and Berenice) it may be taken for granted, in case of the Roman communities as well, that each of them would have several ápXovtes who would act as the managing committee of the yepovoia. It would appear from the title dis ápXwr, whichgis repeatedly met with, that the archons were appointed for a definite period; and in a Homilia in S. Johannis Natalem, ascribed to Chrysostom, and which has specially in view the state of matters in Italy during the imperial times, we are expressly informed that the archon were always elected in September, the beginning of the civil year of the Jews. The following are the ipssissima verba of this interesting pase sage (This homily (according to Weaseling, De Judaeorwn archontibus, chap. x) is to be found in Chrystomi Opp. vol. ii. ed. Paris, 1687):
'Inter hae intuendae sunk temporum qualitates et gesta morum; et primum perfidia Judaeorum, qui semper in Dem et in Mosem contumaces exstiterunt, qui cum a Deco secundum Mosem initium annie mensem Martium acceperint, illi dictum pravitatis sive superbiae exercentes mensem Septembrem, ipsum novum annum nuncupant, quo et mense magistratus sibi designant, quos Archontas vooant.'

Translation: Among these things the state of the times and nature of customs laws must ${ }_{l}$ be looked into; and first the perfidy of the Jews, who always have stood out bold against God and against Moses, who, although they received from God through Moses the month of March as the beginning of the year, exercising a command of perversity or pride, name the month of September as the new year itself, in which month they even appoint for themselves magistrates, whom they call archons. Tr. by Amado.
ioschlirer, Emil, "History of the Jewish People," Second Division, Vol. II, pp. 249, 250. New York.
(2) Phomaio Ashoñonicab Tine Preqins 18 tours Saber have Jewish
"But the Ptolemaic astronomical time begins from the meridian, that is, 18 hours later than the Jews begin. Wherefore, to the Ptolemaic time of new moons must be added 18 hours, in order that it may agree with Jewish time, and indeed at the Alex-merid- andrian itself of Egypt."-- Ugo
(3) Hemic Year Begiva in Aubuñer
"The beginning of the Jewish year is from the autumnal equinox, which is constart for the first year of the lunar cycle of the Ptolemaic abacus."- Ugolino, Blasio, "Thesaurus Antiquitatum Sacrarum," Cols. XXI, XXII. Venice, 1755. (4) Tyinlian Rechoviv Cycle Wow n Pervodioully Earlier

Table of 19myear Cycle Limits of Tisri New Moons from Moses ${ }^{1}$ Time [and earlier] to 1700 A. . Moons in 1700 , by Julian reckoning, are 10 days earlier than in the time of Moses. Ugolino, Blasio, "Thesaurus Antiquitatum Sacrarum," Cols. LXXV, LXXVI. Venice, 1755.
(5) Secret Colenlationt of the Lewes
"Thus, the Jews earlier had two systems of the Tekuffôth: one approximate, known to a.11, the other exact, kept secret. This detail is told by Âl-Bîruni (1000 A.D.)." - Sidersiky, David, "Etude sur l'origine astronomique la chronologie juive," in "Mémoires présentés par divers savants à I'Académie does Inscriptions et belles-lettres de I'institut de France," p. 624. (Tr. from French by Erna Borm.) Paris, 1913.

(6) "The intercalary month of the Jewish calendar, like the one of the Greek calendar, did not have a special name."-- Sidersky, Idem, p. 621.
"The mathematioians, therefore, computed for them [Jews] the oycles, and taught them how to find, by caloulation, the conjunctions and the appearance of the new moon, viz. that between new moon and the conjunction the time of 24 hours must eIapse.
"This reform was brought about nearly 200 years after Alexander [112 B.C.]. Before that time they used to observe the Telcufoth (), i.e. the year-quarters, on the computation of which we shall enlarge hereafter.. "-- Âlbîrûnî, "The Chronology of Anoient Nations," p. 68. Tr. by Sachau. London, 1879.
(8) the "Jerns alewe Era"
formed in the various systems of ahronolocy in use with the encient of the best inpartioularly good documents with regard to the Jews, we are therefore authorized to depend upon the date he indicated, the year 200 of the Seleucid era, or 112-111 B.C, At this period the Jews had a new era established sinee about 30 years by the Macca:bees, under the name of 'Jerusalem era.' It began with the year 170 of the Seleuoid era ($143-142 \mathrm{~B} . \mathrm{C}_{0}$), the date of the recognition of the Jewish politioal independence by Demetrius, and beginning with said year, all publio acts and official doouments were marked: 'in the first year of Simon, the high-priest, the governor and prince of the Jews (I Mac. XIII.42).""-- Sidersky, "Etude -- juive," p. 632.
hacedomian intercalary heradu - Hioscorns
Letter of Lysias to Jews signed "The hundred and eight and fortieth year, the four and twentieth day of the month Dioscorinthius [Diosoorus]. II Mac. XI.21. [Aocording to Browne, the Macedonian names of the months were used interohangeably with Jewish nanes. Browne, Henry, "Ordo Saeolorvm," p. 461. London, 1844. The name Dioscorus would therefore correspond to Veadar.]
(10)
"In the modern Jewish oalen ordinary and embolismic years, respectively, especially the ordinary short year of 353 days, and the abundant embolismice year of 385 days, issues of the system of postponements inaugurated later by the Jewish doctors of Babylon, but whioh did not yet exist in the lst oentury."-- Siderskg, p. 633.
"On the other side it will be noticed in our synthetic calendar that the ordinary year counts 354 or 355 days, and the embolismio year 383 and 384 days, representing exaotly -- expressed in whole days -- the average length of 12 and 13 synodioal months."-- Idem.
(11) Gay of Egyphion Wonth Vowed Qevordicy Lo Woru
"During the Hebrew sojourn in Egypt under the rule of the Pharaohs it [the Jewish year] could take there the form of the solar year, still retaining the Iunar months, in which the Egyptians, too, were interested, for the numerous hieroglyphic insoriptions reproduced by H. Brugsch in his"Thesaurus Insoriptionum Aegyptiaoarum" (the astronomioal and astrologioal part of it, p. 49 and on) contain the suocessive names of the 30 days of the lunar month."--Sidersky, p. 612.
(12) Pos The very object ores la Sanctification des Neomenies , phap. VIT dans son"Thesaurus," vol. XVII, Venise, 1755, to retard by one or two days the official new moons in such a way as to make them coinoide as often as possible with the even-ings-of the appearance of the orescent in Palestine."-- Sidersky, p. 644.
(13) Vuléreatition chouged by Precesaiow of Equirires,
tion, probably in the course of the Hillel II] has again undergone a slight modificaequinoses, the year of the enneadecaeterid oyale Following the precession of the bolismic, became a common year, the IGth day of of the Macoabean era, until then emequinox (see chap. II) and the month thus becoming interoalary month going beyond the changing the order of the embolismic year becoming the first of the new year. Without chace, simply the starting-point of the latter was modified. . . the VIIIth year of the old cyole has become the XVIth of the new oyole."-- Sidersky, p. 651.
(6) Prayer and-Fasting Appointed if Latter Rain is Insuffioient
"In like manner if, in the time of the Passover, or near that time in the land of Israel (for in this time the trees are in flower in Judea), the rains have not issued forth, a fast is appointed, and cries are sent count until either the showers beneficial to the trees have fallen, or the time of rain has ceased."-- Maimonidae, Mosis, "De Jejunio," pp. 31, 32. Ex Hebraeo Latinè conversi à Ludovico De Compiegne. Parísiis, 1667.
(7) No Fasting After March -- Rain Should Then Be whed
"When the March period is over, indeed when the sun enters that sign which is called Taurus, then no fast is appointed: for rain at this time is for an evil omen, since it akould not rain straight forward [continuously] from the beginning of the year."-- Idem, p. 43.
(8) Barley Quiokly Ripens After Rains Are Over
"The harvest falls out entirely according to the rainy season. After the rains oease, the oorn soon arrives at maturity; but it usually remains in the fields a long time after it is ripe. Barley is ripe in the beginning of April, in the plain of Jericho, acoording to Mariti l.c. In all other parts of Palestine, it is in ear at this time, and the ears turn yellow about the middle of this month."-- Buhle, Johan Gotlieb, "Eoonomioal Calendar," p. Brunswick, 1785.
(9) Importance of Celobrating Passover in season Sets All Subsequent Feasts "If this feast of unleavened bread is not celebrated in its season, every suecessive festival is dislocated from its appropriate period, since the month Abib is laid down in the law of God, as the epoch from which every other is to follow."-- American Biblical Repository, April, 1840.
(10) Names of Macedonian Calendar Months in Josephus Identical with Jewish a. "That the Macedonian lunar months corresponded with the Hebrew is proved by Josephus, who almost constantly designates the Jewish months by the Macedonian names ourrent among the Syrian Greeks for whom he wrote. The month Xanthicus for instance, in Josephus, is absolutely conmensurate with Nisan, Lous with Ab , Hyperberetaeus with Tisri."-- Browne, Henry, "Ordo Saeclorum," p. 461. London, 1844.

৮, "Concerning the Months of the Greeks. But by them March is celled Distrus; April, Xanthicus; May, Artemisius, etc."-- Venerabilis Bedae, "Opera quae supersunt omnia," p. 117. Edidit J.A. Giles. Vol. VI. Londini, 1843.
c. "Now let us hear Josephus.'But God commanded Moses to say to the people that they should have ready at hand a sacrifice, preparing it from the 10th day of Xanthicus on the 14th day of the month, which month among the Egyptians is indeed called Pharmuthi, and among the Hebrews, Nisan, but the Macedonians call Xanthicus! ' (Josephus, 1. III, c. X, par, 5).

- Therefore in the month Xanthicus, that is, April, etc."-- Miohaelis, John David, "De Mensibus Hebraeorum," p. 37.
d, Scaliger gives a table making the liacedonian months identical with the Jewish ("De Emendatione Temporum," p. 379. Francofurt, 1593).
ε, "We give here the names of the months as they were ourrent after the exile and during the age of Jesus, to which we add the Macedonian names employed by Josephus as the equivalents of the Jewish ones. " "ETablefocheras), Caspari, Ch. Ed., "Introduotion to the Life of Christ," p. 5. Tr. by Evans. Edinburgh, 1876.
"GMINI ELIMHETA ASTRONOITLAE"

ad codieum ifdam roconsuit cormenica intorprotatione et

 comenteriis instiundeCAROLDS MANTTTUS

Translation from Gomon by
Brae Borm

> IIpsiee
> In eodibus $\frac{\mathrm{B} \cdot \mathrm{G}^{2}}{} \cdot$ Toubneri
> 1898

About the Months

A month is the time from one conjunction to the next or fram one full moon to the other. A confunction tekes plece whon sun and moon are in the same degree. Th2s happens on the 30th of the month. It is full moon whon the moon stands diamotrically opposite tho sum. This happons about tho middlo of the month. Tho time of a month mounts to $29 \frac{2}{B}+1 / 33$ days. 4 In the course of a month the moon passes not only through the zodiae but also thet part of the sun is covering (pessing through) in the courso of a month in the direction of the signs; this is epproximately one sign. Thus the moon is paesing through ebout 23 signs in the course of a month.

The oxact timo of the month, as stated, anounts to $29 \frac{1}{2}+2 / 33$ deys, but for the eivil compution the month is rounded off to 29^{2} deys, so that a double month is oqual to 59 days. For this reason, the oivil months are countod altormately Iull (at 30 days) and hollow (at 29 days) for the double month has 59 days. From this, the lunar year ni 35h days results: by multiplying 29 i deys by 12 , the result vill be 354 days of the lumer yoar. A distinetion mast be made botweon the lunar and the solar yoar. The solar yoas covers the course of the sun through the 12 sigms, or $3651 / 4$ days, while the 1 unar yoar covers a period of 12 Iunar months, or 354 days.

Since noithor the month nor the solar yoar consists of vhole days, the astronaners searched for a period covering whole deys, whole monthe snd-whole years. To reckon the month eccording to the moon and the years eccording to the sun wes done with a purpose by the encient peoples. The demand medo by the Law and the orecles to present the seerifices "aftor the menner of the fathers" all the Grooks undorstood to moan, that thoy wore to koop tho yoars in agroomont

WIth the sun, the deys and the months in agroenent with the moon. But to reokon the years after the sun moans, to prosent the same seorifices in the semo soasons of the yoas (the spring speriftice must alvays be presonted in the spring). (the summer seeriflee alveys in the sumer, likewise in the romaining soasons of the year, tho seme seorifices had to be brought.) For thoy thought this to be plonsing end agroooble to the cods. This is possible only in case tho solstices and the equinoses always come in the seme months. To rookon the deys according to the moon moens o to koop the nemes of the days in agroament with the phases of the moon.

The nemes of the deys ere takon from the pheses of the moon. The day, on which the now moon boeones visible was called beoause of this, "new moon"s the dey the seeond appearance takes pleoe whes nemod the "seoond"; the appeerence of the moon telcing place ebout the middle of the moon was called after this "middle moon" . So ell days were nemed eccording to the phases of the moon. Therofore, the last dey of the month, (the 30th), after the coinelding was named. Trikade. In conformity here, Aratos exprosses himself with regard to the nemes of the days as follows:
"Don't you see hor? Whon sho eppoars again as a tiny horn,
Lune on the wostomn sly, of tho now and growing month :
She toaches, as soon as the first glamer of hor is pouring outs
Then she throus a shadow, she thon goos to the fourth of the deyss
Hall on tho ofight, townrds the middio of the month round as full moom,
Alvays from enothor place a difforont face, showing to us,
Sho annoumees to you what day of the month soon will be gone."
Thus, he plainly states that the names of the day wore derived frcm the phases of the moon. As proof that the days aro reokonod exeotly aftor the moom serves the frect that the soler oclipses taice plece on the 30 th-wthem the sun enters in conjunction with the moon and is in the same longitude-minile tho lumar eelipses oecur in the night loading to the middle of the month-othen the moon stends in opposition to the sum end onters into the shadow of the earth.

If, therefore, on one sIde, the years are reckoned exaotly according to the sun, on the other side the months and the days according to the moons thon the Crook bolleved to bring their offorings "in the menner of the fathers" (the same seeriffees were offered at the same soasons of the yoar.)

The Egyptiens hed exeetly the opposite understanding and Intontion then the Grook. For thoy neither reokon the yeare eftor the sun nor tho monthe and days after the moon, but followod quite a peculiar prinoiplo. Because thoy did not that the saerifices mere brought at the seme time of the year, but thoy should go through all seasons of the year, (the sumer fostival, at one time, is to becane a winter festival, and the eutumnel fostival one doy a spring fostival). For thoy reckoned the yoar at 365 days, having 12 months at 30 days and 5 additionel deys. Ior the above givon roason they do not oount the $1 / 4$ day so that thoir fostivals would go beclcwards. In 4 yoars, they aro one day bohind as compared with the sun, in 40 years, they will bo 20 days bohind in relation to the soles yoar. Thus thoir fostivals too, would keop bohind in oonformitity with the purposes not to have tham in tho seme season of the yoer. In 120 years, the differonce with the soler yoer, and with the soasons of the yoar too, will enount to a whole month.

This quite gradual incroase con be considerod as the reesom why a cormon error, sanctioned by a tredition of many yoars standing, has beon aecepted in good fafth with the Grocians. For the majority of the Crook are of the opinion that the winter solstice tokes place simulteneously with the Isis festival according to the reckoning of the Egyptians as, well as according to tho celondar of Budoxos. That is quito wrongs booouso tho Isis featival diffors with the winter solstice by a whole month. 26 Tho error eropt in for the above statadi roeson. Ones, (220 yoara ego) tho Isis festival actually was celebrated oreetly at the wixtor solstices but only four yoars later the difference emounted to one dey. That difforonce, it is true, was not noticeable in the season of the
yoar. After 40 yoars, the differonce mounted to 10 days. But this, too, would not be so conspicuous, Howover, at prosent, whon after 120 years, the difforemee moumts to a whole month, the supposition, that the festival of Isis ceme on winter selstice according to the rockoning of the sgytians as well as after Budozos, does not leok In ignorance. A differonce of one day or at most two can pass, but a difforence of a whole month cannot remain unnoticed. For the length of the days can sorve as a clue which show a big difference exapered with the wintor solstice. Bosides, the sun-diels showod plainly the true entry into the solstice, especielly with the Beyptians who were such good observers. Thus, onco upon a time, the Ieis fostival coincided with the winter solstiee and still earlier with the sumor solaticomeas mentionod also by Eratosthones in his treetise about the oight-year period-eand in future it will be colobrated in the fall, at the sumer solstioe, in spring and again at the winter solstice. Because in the course of the $1 / 60$ yoers, ${ }^{17}$ each festival must pass through all soasons of the yoar and again return to the seme point of time.

Thus the \#gyptians undertook to solve eceording to this peoulier prinoiple the problem we are now dealing with thile the Greek, pursuing the opposite view reckoned the years according to the sum, the months and the deys, however, after the moon. As to the anolents, their months had 30 days, and the interealery months they inserted one yoar after the other. But beeause the correctness of this procedure in viow of the phoncmonon in the heavens soon was questioned since the deys and monthe did not remain in harnony with the moon, and the years did not hold pace with the sun, they were loolding for a period wich with rogard to tho joars would ramain in hamong with the sun, with regard to the months mid deys in hamony with the moon, and yot eonsist of whole monthe, whole days and wholo yoars. The eftret poriod thoy set up wes the efigh-year period; it covors 99 months including 3 intoroalary months, or 2922 days, (osght yoars). They errived at it thus. As the solar year has $3651 / 4$ deys but the lunar yoar only 354 days, they took the eroess of the solar yeer over the luner year. It amounts
to $111 / 4$ days. It wo flgure the months in the year according to the moon, we shall bo bohind as compared with the solar year, $211 / 4$ days. Now, thoy searchod for the mumber to multiply these dege by in order to get whole deys end whole months. You get this by multiplying by eight: 90 days or throo months. Sinoo wo aro bohind $111 / 4$ days in a solar yoar, it is clear that in oight yoars, conpared with the sum, wo shell be bohind 90 days, or three monthe. Therofore, in each oight-yoar periods, three intercalary months are inserted, to make up for the ennual shortage as compared with the sum, and the tho festivals again come in the seme soason of the yeer. Whon this is dono, the seorifioes ere a.lways presented in the same season of the yoer.

Now, tho intercalary months had to be insertod as rogularly as possible. One must noither vait until the difforence, as compared with the phomamenon in the ely, knounts to ono months, nor should a vinole month be takon in advinee, es comperod with the course of the eun. For this reason, the instruction was efven to insert the interaalary months in the third, fifth and of ghth years, or two months after en interval of two yoars, one with but one yoar intorval. It does not make any differenoe, howovor, should the corrosponding order of the intorealary months bo made in other yoars.
(The Iumar yoar has 354 days. Thorefore, the month according to the moon was reckonod at $291 / 2$ deys, the doublo month at 59 days. Thus, the months are full and hollow, altornatoly, because tho double monthlas 59 deys accorating to the moon. So the yoar has six full and six hollow months; the total of deys exnounts to 354.)

Were it merely the solar yoars wo have to bo in agreanent with, wo would remain in suificient hamony with the phenononon of the sly by applying to the phemomonon of the sliy, the just described period. But inemuch as not only the years are reckomod after tho sum, but also tho months and days after the ricum, a mothod was seerohod in order to setisfy this demand, too. As the month, striotly spealcing, amounts to $292+1 / 33$ days, while the oight-year period ineluding the

Intoroalary months hae 99 months, tho totel of tho daye of tho months was multiplied by 99 , tho number of months, $\left(29 \frac{2}{2}+1 / 33 \quad 99\right)$. Tho result is 2923^{3} days, which moons that in ofght solar yoars, thoro are 2ge3 days aocording to the moon. But the solor year has 365 . $/ 4$ days; oight yoars according to the sun, thus, cover 2922 days which rosult you got by multiplying the deys of the yoars by oight. As tho days according to the moon in eight yeere emounted to 2923 ,
 Consequently, in 16 years, wo shall be three days bohind as canpared with the moon. For this reason in aach 16 -yoar poriod in consideration of tho sourse of the moon, three days are added so as to reckon tho yoars according to the sum but the months and deys according to the moon.

Weleing this corroction has mothor inistalce in its train. The throo days added in 16 years in consideration of the moon causo in 160 years in relation to the sum to be 30 days or a month ohead. For this reasom evory 160 years an intercalary month is takon fran tho oight yoar periods (instead of the three months which should bo insorted in the eight years, only two aro inserted in the eight yoars, only two are insertod.) Thus after dropping this month again thore is hamony as regards the monthe and deys with the moon and with rogard to the yeare with the sun.

Aftor making this correction, still there is no hamony obteined with the phenomemon in the sky. For the whole of ght-yoor poriod is wholiy inoorreet as rogarde the monthe, days and intercalary monthe. (For the time of the month is not counted exnetly. 18 To be exnct, the time of the month is $29 \mathrm{~d}, 31 \mathrm{~m} .50 \mathrm{~s}$. 8 t. 20 q . Therefore, in the course of 16 yoars, instoad of threo interealary days, four wAll heve to be edded. Honce in nono of tho periods the samo numbor of hollow months must be given es full months, the mumbor of the full months must rathor outwoigh tho hollow months. For if the month had only 29 ? days, sm equal number of full and defioient months would have to bo taken. Now, there is

In the monthly period a small noticeable fraction which grows to the longth of one dey. For this reason, the number of the full monthe must out number those of the hollow monthes) There are not three interealary menths in eight yoers. For if the lunar yoer hed 354 cays, the difference with the solar year would be $111 / 4$ deys and this multipled by oight would cortainly make three sull interealary months. But the lumer yoar hae exeotly 354 and $1 / 3$ deys. If wo doduct $3541 / 3$ Iran 365 1/4 there ramains 10 21/22 deye. This multipled by oightenoumts to $871 / 3$ days (not threo ful months). For this reason in eight years there must not be addod throo interoalary months. The seme result you get with the holp of the $19-y e a r$ oyole. In 29 yoars seven interealary months are inserted by which the 15 -yoar oyele as rogards the months will ravain in hamony for a longer period. In eight 19 -year oyoles, there will bo 56 intercalary months. In the eight-year period are three intercalary months, in 19 eight-yoar periods, (in 152 years), there will be 57 intercalary months. During that same time according to the 19 -year oyele, which is in hemony with the phenanena in the heavens, there will be but 56 intercelary months. Thus, the oi ght-yoar period (In 152 years) has one intercalary month too many. Consequomtly, the eightyear period does not have three intercelery months, but is also quite feulty In this respect.

Beoause it has turnod out that the eight-yoar poriod is incorreot in every reppeot; the astronomers of the school of Euktomon, Fhilippos and kallippos 19 set up a now poriod in the 19 -yoar cyole. For thoy had foumd through their observations that in 29 years, there are 69,0 days or 235 months inoluding the Intercalary months. There aro sovon intercalary months in the 29 yoars. (Thus the year nccording to its rockoning has $3655 / 19$ deys.) of the 235 months, 110 were reckoned as deslaient and 125 as full so that the full and hollow do not almys altemate, but scmetimes two full follow each othor. This measuro, not followed in the oight-yoar period results from the natural oourse of the
phoncmena of the heavens in view of the behavior of the moon. Of the 235 months 210 wore counted as hollow months for the following roason. Since theme are in 19 years, 235 months, these at ifrst were reckoned at 30 days each, or in total, 7050 days. But in the 29 -year ojole, there nore 6940 deys according to the moon. How if you take all months at 30 deys, it emounts to 7050 days as against 6940 , and this plus amounts to 110 deys. Consequently, thoy teice 110 defloient months in order to make full the 6940 days of the 235 months in the 19 -year cyole. In order to distribute these days as ovonly as possible, they divided the 6940 days by 210 ; thus you got 63 days 20 Honce, in the course of every 63 days in this oyole, eny day is to be pointod to as to be eliminated. So, In no wise alweys the 30 th of the month is left out but alveys the dey following the 63-day interval.

In this cyole to all appoarences, the months are givem correotly and the intercelary months are arrangod in conformity with tho colestial phonomena. But the time of the yoar is not in hemony with the celestiel phonomona. If the tirne of the yoer fram within a. lougor poriod of yoars is determined by ooservation, the concurring result is $3651 / 4$ days vhile the value derived from the 19 -yoar oyele conounts to $3555 / 19$. This latter value is by $1 / 76$ days bigger then the first. Therefore, the eatronamers of the sohool of Kallippos have doen sway with this excess by a correotion and set up the 76 -yoar oyele; it consists of four 29 -yoar oyclos with 940 months including 28 Intercelary months, or 27759 deys. The arreagomont of the intercalary monthe was hendled In exactly the same way. Experionce has shown that this oyclo agroos best with the celestial phencmena.

Cheptor IX

On the Fhases of the Hoon

The moon gets its light from the sum, for her illuminated part is aivmys tumed toward the sun. If she risos bafore the sun, her illuminatod part is townerd the east, end if sho rises aftor tho sun, her illuninated part is toward the wost. Whothor sho sets bofore or after the sun, hor IIIunInatod part is tumned tovard the sum. On some days, an obsorvation has been made whioh prosonts itself but seldom, nemely, that the moon sots after the sum and her 11luminated part is dirooted towerd the west. But after having passed by tho sun during the night and now having arisen bofore tho sum, her illumineted part is soon diroctod toward tho oast. 21 Fran this, it is evident that the moon gets her 11 ght from the sum.

Then the following observation has boon nede. Whem the sum rises during the winter solstice, exectly the center of the illuminated part of the moon is directed toward the sum, so that the line which comnects the horns of the moon is out in hale by a point to point line under a right angle. If then, the sun rises at the time of the sumer solstices again the oenter of the illuminated pert is directed towards the sum, so that likowlse the above nanod line is cut in hale and under a right engle. The seme thing happens at the sottings of the sun. Thus, this sign, too, proves that the moon gots hor light from the sun.

Howover, at all times on equally groat part of her is illuminated, (a half-sphere), only this equally groat illuminatod part is not alwoys visible to our field of vision on sccount of the different elongations from the sum. For whon on the 30th of the month, the sum and the moon onter the seme dogree, then the hemisphere directed towerds the sun, is illuminated which is turned
fram our field of visiong for the course of the moon is bslow the sun. But, if the moon-mabout the first of the moon--has passed by the sun, then she is seon in the fomm of a siokles for of the illuminated hamisphere only a small part reaches our field of vision booause of her moving sidoways. But as the moon is distanoing herself fron the sum in the follouing days, the illuninated part Is soon by ue to an over-ineronsing oxtont. If tho distance mounts to a quartor of the zodiac, the moon is soen half-full. For them oxaotly helf of the hemisphere illuminetod by the sum is turnod toward us. If the distence of the moon from the sum beocaes groeter, thom the 11 luninated pert is beocming visible in greater measure. II it ocnes to stend diemetrioally opposite the sun, the iliuminoted hemisphere cones to our field of visiom exactly opposito. The. visibility of the sizo of the phases is elways in rolaciomship to tho olongation. Pinally, Whon the moon goos underneath the sum, she seams to us unilluminated. For her illuminatod hemisphere is them turned upvard to the sum wherefore the illuminated part of the moon naturally beocones inviaible for us. Fron this is evident that the moon receives her iight from the sun.

The moon pesses throug all hor pheses-mfour in mumbr-in a period of one months, passing twice through each. The phases are as follous; orescont, hale full, ourved both sides, full. She has the fom of a crescont at tho boginning of the month, half full ebout tho oighth of the murith, both sides curved about the twolfth, full, the middle of the monthy them egain both sides curved, after the middie of the month, hals full, about the twonty-third, the form of a sickle tomards the and of the month.

Howover, the noon does not always take on the seme form on the days nemed the seme, but due to the irrogularity of hor movomont, on affeorent days.

The moon appoars:
as a siokle at the earliest on 1st, latest on 3rd. ranains in form of sickle until 5th, or to 7th. becames hal f-ftull earliest on 6 th, iatest on Pth. both sides ourved earliest on 10th, latest on 13th.
full earliest on 13th, latest on 17 th.
2nd time both sides curved oarliost on 18th, lateet on 22th.
2nd time helefull earliest on 21et, letest on 23rd.
2nd time sicicle form earlisest on 25th, latost on 26 th.
(The wholo period of the month emounts to $291 / 2+1 / 33$ days, The month is the time from one confunction to the next or from one full moon to the other: Conjunetion is the time when sun and moon enter the seme degree which is the case on the 30 th of the month.)

On the Great Poriod of the Yoom

The great period of the moon is the shortest intervel which covers whole (synodio) months, wholo days and whole (ancmalistic) coursos of the moon. For, after heving found by observation the timo of the synodic months, the value of approximately 29 巻 $\mathrm{plus} 1 / 33$ deys for the anomalistic course of the moon, the valuo of about 27 plus $1 / 18$ days, the shortest intervel was 100 ked for whith covers whole deys, whole synodic months and whole ancmalistic courses of tho moon. With these it is as follows:

The moon passes through the Zodiac semingly In en irregular velocity. Fog instance, if she has passed through the small part of the ooliptic in her course, her movenent on the next dey is greeter than this, and is still groator In the following days until the greetest part of the aro has been covereds thon again always a smaller part then the preceding until she roturns to the mallest pert of the are from whieh she started, thus covering one couree. The time fron the omallest movament back to the smallest again is celled anomalistie.

It is found by observation that the great poriod of the moon covers 669 whole synodic months or 19756 deys. In this time the moon mekes 727 enemelistie courses in longitudo (that is, with ragerd to the Apsides and 726 mamalistic courses in latitudes that is, with regard to the nodes, 32) whilo in tho time montioned sho passos 723 times the Zodiac and, in addition, 32°. Knowing these facts through observation of the slig since enciont times, and as it was necessary to doternine the dasily anomeli in longtatue; the question wer zasseda

1. How much is the smallest, the greetos sad the mom movanent of the moon?
2. How much is the defily inorese or decreaso of hor movomont?

From the observation of the sly (fer the solution) es a help served furthemore the feet that when pascing tixuagh this smallost part of tho are in hor oourse, sho covore more then 21° but less then 12°, end when passing
through this groatest part of the ocliptic, she covors more then 25° but less than 16°.

Since now it has been detorninod through observation that the moon passes In 19756 deys 723 times the zodiac and, in addition, 32° and as eech oircle has 360°, I have reduced the muber of circles into dogrees adding 32° to it. The totel emounts to $263 y 12^{\circ}$. So the moon passes through this number of degrees in 19756 deys. By dividing tho number of degroes by the number of days wo shall find the averago caily novanent of the moon, for if you sinply divide the number of degrees by the number of days, without consideration of the inerease or deorease of the movenent, you get es a rosult the somealled moan movenont. It amounts to $13^{\circ} 10^{\mathrm{m}} 35^{\mathrm{s}}$. (The 6oth part of aidegreo is callod minutes the sixtieth part of a minute is called second. Likewiso the second is divided into sixty parts and each sixtieth part is callod tortie.)

With the holp of the methematioal exemple hore given, the Chaldeens have sound the mean moverent of the moon to be $13^{\circ} 10^{m} 35^{\mathrm{s}}$. As the moon in 19756 deys malos 727 anomalistio rounds, in ordor to lenow in how meny deys the moon is making one round wo must divide the number of deys by the numbor of courses. Then to one course ocme $27^{\mathrm{d}} 33^{\mathrm{m}} 20^{\mathrm{s}}$. ($\left(27^{\mathrm{d}} 33^{\mathrm{h}} 20^{\mathrm{m}}\right)$. In so meny deys the moon gotes from the mellest movemont baok again to the mallest.

As now in the whole course there are four ovem periods, I have takon the fourth part of $27^{\mathrm{d}} 33^{\text {m }} 20^{s}$ which is $6 \mathrm{C} .53 \mathrm{~m}, 20 \mathrm{~s}, 3$ thus the moon gets in so many deys from the smalleat movanont to the moen and from the mean to the greatost; thon again, lifrowiso from the greatest to the mean and from the mean to the snallest. These four poriods are equal.

Then wo apply the thoorems In an arithmotioal trinomial progression, the total of the first and thitrd temm is double that in the middle. In the movemont of the moon thore aro throe if guros which form an arithmotioal progressions the analleat, the moan and the eroatest novanont. If wo now add tho greatest and the serallost, their sum total will mount to double that of the mean movemont. The mean movanont mounted to $13^{\circ} 20 \mathrm{~m}, 35$ s.f I havo doublod this valuo and
get $26^{\circ} 21 \mathrm{~m}, 10 \mathrm{~s}$. Consoquontly the greates and the smallest movement of the moon totals $26^{\circ} 2 \mathrm{mn}, 10 \mathrm{~s}$. But the greatest and the smallest movement as found by cbervation in the rough totols but 26°. Thus thers remains a pius of 21 m. 10 s. whioh had slipped the observation made with tho aid of instruments. This plus must be addod to tho mallest and the groatost movemont so that the total of the two movenents emormbs to $26^{\circ} 27 \mathrm{~m}$. 10s. One must, howover, be caroful In adding the excoss that on one had the smallest movemont vill not booone erontor then 12° and on the other hemd, tho giroatest not greater than 16°. The exact division will have to bo made in the following meenert As tho moon gete fram the mallest movement to the mean and from the meen to the groatost in $6 \mathrm{a}, 53 \mathrm{~m}$. 20s, and as the inorease as woll as deorease is a stationery quantity, a figure must bo found which multiplied by the fourth part of the time of the course will rosult in a IIgure which addod to the moan movemont conounts to a value which lios botwoon 15° and 16° but doduotod froan the mean movenent leaves a valuo whioh lies betweon 11° and 12°, while the values to be added to 15° or 11° total $21 \mathrm{~m}, 10 \mathrm{~s}$.

The figure with the looked for quality is found in the value 0028 m . For, if you multiply this value by tho fourth part of the time of the course, that is, 6 d .53 m .20 s . the result is $2^{\circ} 4 \mathrm{~m}$. IIow you got from the mem movement found abovo by addition or subtraction of this quantitys

$$
\begin{aligned}
& 23 \mathrm{~d}_{*} 20 \mathrm{~m} \cdot 35 \mathrm{~s} *+2 \mathrm{~d}, 4 \mathrm{~m} *=\frac{\mathrm{I}_{4}}{} \mathrm{~d}, \mathrm{I}_{4} \mathrm{~m} \cdot 35 \mathrm{~s} \cdot \\
& 13 \mathrm{~d} \cdot 20 \mathrm{~m} \cdot 35 \mathrm{~s} \cdot-2 \mathrm{c}_{*} \cdot 4 \mathrm{~m} \cdot=11 \mathrm{~d} \cdot 6 \mathrm{~m} \cdot 35 \mathrm{~s} \text {. }
\end{aligned}
$$

Consequently, it is found the mallest movemont of the moon equais 11 d .6 m .35 s . the mean movorent of the moon equals $73 \mathrm{~d} .10 \mathrm{~m}, 35 \mathrm{~s}$. the grantost movement of the moon aquals $15 \mathrm{~d} .14 . \overline{\mathrm{z}} .35 \mathrm{~s}$. and the daily inorease of the moon equals 0 d .18 m .

On Coninos: Bra , Fathorlend and writinge

The starting point of the controversy on Cominos ' Bra and Fathorland foms the suppositions laid down by potur, pertly in the introduction and troatises on the Uranoloctum and pertly in the caments on the Isegoge. In the ftret placo (p .3) ho statos briofly and plainly coninos has lived at the timos of Sullas and Clcoro; that his fatherland was tho Island of Fhodos is gonerally aegroed but that he is supposed to have steyed in Rane and Xtely and thare writton tho Isagoge is basod on a comelusion not to be oasily dismissed, supportod also by thommo ceminus which indioatos a man standing in the midet of Ramen traffic, meybe the froed slave or cliont of \& fanily by this namo as, for instance, the sorvilian. The supposition for which the reason is givon In dotail in the troatises, F. 150, ot seq. The supposition that Geminos has writton the work preserved for us in Rame is based on something which eamot be considorod authoritative to us due to fragnomtary tradition, (See illote 10.) Thanks to a keoon combination for his ora, the your 77 B . Co is dotermined. The suppositions of lator scholarg, es Voss, Weldier, Hemborgor, Icoler, Dolembro, Grasse, ot al, besod more or loss on Potaus' conclusions, Mas C. P. Schmiat ($2884, p, 88$) has oarefully compiled. To this list Paul Tomnory (1885 p . 285, ot Seq.) should be added, who ocmes to the year 30 B. C. by a rather foroed interpretation (Seo Noto 16), thus malding Geminos a cotamporary of Strebon.

Of the difforing suppositions which give the ora of Gaminos considorably lator or earlior (soe sohmidt 188L, p. 85, ot seq.), only ono desorves to be montioned bocause it has found edherence beoause of the dotalled reasons givon. It is a supposition of Brandos that Geninos had writion his Isagoge about $\mathbb{L}_{10} \mathrm{I}$. C. Scaligor alroady in 1598 had undorstood the statanant in Chaptor VIII, pp, 2-24, concorning the tine to moan that Geninos was 120 yoars

Later than the astronomer Budosos of Knidios (about 380 B. C.), which is about 260 \#. C.s thus to bo sure caninos vould bo older then Hipparchos to wham he roforrod, which also ceused Soalinger's woll foundod doubts. Procoeding from the seme understanding of the differonco in time, Srendes ($3847 \mathrm{p}, 219$) tried to remove all doubts by distinguishing a younger Budozos of Thodos fron the older Eudozos of zinilos whose paper Ces Parlodus, wittem about 260 B . C.e wras takon by him as Cominost sourro on the Egyptian Isis festival.
(summary, p. 251)
Our final conclusion is that the Stoic philosopher Cominos, presurabiy a Grook fram the Isle of Rhodos, the author of a voluminous work on the systamatical division of mathamatics, wroto about $73-67$ B. C. a comentary not $20 s s$ voluminous to the motorological elamentary teat book of his teacher, poseidonios of Rhodos. From an opitame of this camontary odited by himself and existing until the sixth century A. Des on unnemed author of the fourth to esfth centrury A. D*, writing at latitude 47° (Canstantinople ?) undor the original titio,
 of additions which have camo down to our time as Geminos: Introduction to Astronany,
(P. 23, 101, 201) The tropicel month discoverod by Hipparchos, that is, the time when the moon proceeding from tho vomal oquinox again roturns to seme, mounts to 27 deys, 7 hours, 43 minutes, 4.7 seconds $=27.322582$ deys around $27-1 / 3$ days. As the vemal oquinox because of the precession of the equinox movas toward the moon, therefore the tropicel month is by a fow seconds shorter than the siderio nonth, by whit oh tom is understood the time when tio moon proceoding from any Ifrod point again rotums to the some point. This time amounts to 27 days, 7 hours, 43 minutes, 21.5 seconds $=27.321661$ days. Farthemeris, tro acditional couxses of the moon ere to be considered.
(a) p. 101-The synodie month, that is, the time botwoen the two noarest congunctions of the moon with the sum, enounts to 29 deys, 12 hours, 收 minutos, 2.9 soconds $=29.530589$ drys, or around $29 \frac{2}{2}$ days plus $3 / 100-292$ doys plue $1 / 33$.
(b) p. 201--The anonalistic month, that 1s, the time in which the moon from the perigoo again roturns to the sexes, emounts to 27 deys, 13 hours, 18 minutes 37 soconds, or 27.554600 deys, around 27 青 deys plus $55 / 1000=27 \frac{2}{8}$ deys plus $1 / 2$ gith
"L-if a ship going westward is approaohing the 180th meridian near midnight f Saturday, August 2, for example, the navigator enters the new day in his logobook as Monday, August 4, thus losing Sunday out of the weok, but if the ship is going eastward, and is approating the merrdian near midnight of Sunday, August 3, for example, he enters the new day in his log-book as Sunday, August 3, thus repeating the Sunday of that week.

Thus the colendar of the traveler in making the oircuit of the world is isept in agreement with the calendar of any country he may visit, inoluding that of his own home, when he returns to it.

Greonvich noon is then, the only instant at whioh the date can be the same all around the world.

Striotly the navigator should make the ohange at the instant of orossing the meridian; but all counting of time is a convention, to suit the convenience of the people concerned; and so navigators have agreed that when on the open sea, they will make the ohange at the midnight nearest to the time of aotual orossing."-Filint, Albert S_{0}, "The Changing of the Date at the 180th Meridian." Popular Astronomy, Vol.XXVII (1919), Northfield, Minnesota.
(Albert Stowell Flint (1853-1923) was an astronomer and computer at the U.S. Naval Observatory).
"Krusenstern, in his "Voyage around the World, 'says: Ton the 29th April (1806) we had made three hundred and sixty degrees of the Greenwioh meridien from east to west. I therefore altered my reokoning; and as we had lost a day, oalled the next the lst of May. ${ }^{\circ}$ - - Hinks, Arthur R_{\bullet}, "Nautical Time and Civil Date." Geographical Journal, Vol. LXXXV1, 1935, p. 152.
"International Date Line," by Roscoe Lamont. Popular Astronomy, Vol. XXIX (1921), page 340.

Dutton, Captrin Benjamin, "Marigation and Nautical Astronomy.
Because of the variance between the 180th meridian and the irregular international date-line, each day lasts for 25 hours and 12 minutes. For this reason, three different days exist at the same time. When it is $12: 01 \mathrm{~A}$.M., Wednesday, at Cape Deshnef, Siberia, it is $11: 17 \mathrm{~A} . \mathbb{M}_{\bullet}$, Tuesday, at Greenvich, England, and 10:49 P.M., Monday on Attu Island at the extrome west of the Aleutian group.

"In making some computations last March about the occurrence of new moon, an error of statement was discovered in the ninth edition of the Encyclopedia Britannica, under 'Calendar,' Vol. IV, p. 594, and repeated in the eldrenth edition, Vol. IV, p. $993 . \times$ Also in the fourteenth edition of 1929, Vol. IV, p. 570, upper right corner of page.] It is also given in Barlow \& Bryan's mathematical astronomy, p. 215. The erroneous statement is that new moon occurred on January 1, in 1 B.C.
"New moon in January, 1 B.C., occurred on January $25 \mathrm{~d}, 12 \mathrm{~h}, 26 \mathrm{~m}$, Jerusalem civil time*
"Dominion Observatory, Ottawa, Canada. From Journal Royal Astronomical Society, Canada, XI, 1917, p. 258."

Copied from a note in the eleventh edition of the Encyclopedia Britannica, Vol. IV, p. 993, at the U. S. Naval Observatory. Washington, D. C.

May 7, 1936 J. H. Wièrts.

"GAZETTE ASTRONOMIQUE" Decembre 1934, \#252

Monthly Bulletin of the Astronomical Society of Antwerp (Belgium) Publ. by La Prévoyance, dir. G.Van Staeijen. Marché aux Boeufs, 25.

VISIBILITY OF THE LUNAR CRESCENT BEFORE AND AFTER THE NEW MOON (Visibilité du croissant lunaire avant et après la Nouvelle Lune)

I have often commented on this phenomenon in the course of my astronomical observations; it interests the observers of the shining of the pale gray light and the shortening of the lunar crescent. The most favorable conditions to observe the moon in the evening present itself from March to June and for the observations in the morning, from September to October. According to my observations of September 30 and October 3, 1921 the interval between the last observation of the morning and the first observation of the evening is 3 days, 15 hours. The smallest age of the visibility of the young moon for the latutudes 48° to 49° is 28 hours (1).
(1) NOTE 1, p. 159: In the observations of M. L. Andrenko (Gaz. astr. \# 24,6, June 1934, p.77) there is a typographical error: the age of the moon should be 31 h 30 m and not 21 h 30 m .

It might be interesting to compare these results with those of the observations made in southern regions. Thus, according to observations made in South Africa (see Rize Hvezd, 1933, No. 4 and Cape Times of December 2, 1932), the lunar crescent was seen on November 28, 1932 only 17 h 31 m after the new moon and on Novembre 28, 1913 even at the age of 16 h 39 m . Analogous conditions present itself very rarely in our regions. For instance, L. Decroupet in Belgium has observed on Novembre 22, 1890 the lunar crescent 19 h before the new moon (see E. Predtetshensky, L'Amateur astronome, p. 101).

Here are my observations:

1. Visibility after the new moon:

In March: 38 h (March 27, 1933); 28 h 22 m (March 16, 1934). In April: 28 h (April 9, 1921). In May: 32h (May 25, 1933); 28h 30m (May 14, 1934). In June: 38 h 24 m (June 13, 1934. In October: 51 h (Octobre 3, 1921).
2. Visibility before the new Moon:

In July: 63 h (July 20, 1933). In August: 52 h (August 19, 1933). In September: 35 h (September 30, 1921). In October: 33 h (Oct.19,1922).

Dneprostroi (Ukraine), October 3, 1934.
"Thus until this day the Karaites in the Orient, and in the Crimea, are seen to have their religious festivals celebrated on different days by different communities.

Sidersky, p. 623.
"Thus 30 days are added, increasing by one day the preceding month, and giving the intercalary month a length of 29 days." Sidersky, p. 600.
"The whole computation as far as possible tends to make the beginning of the month coincide with the first physical appearance of the new moon." Sidersky, p. 603.
"Thus, in order to know the form of the year, it is necessary to calculate its Tisri Moled and the one of the following year in order to establish the interval."

Sidersky, p. 611.
"The words hodesch ha-abib usually are translated by "month of the new grain," or "month of the ears," because the Hebrew word abib is synonymous with "maturity of the corn; and, on the other hand .. on the l6th of the month the first fruits of the barley harvest had to be offered in the temple of Jerusalem."

Sidersky, p. 614.
"To determine the month of Abib, the more or less imminent maturity of the barley was being observed, the first fruits of which had to be offered in the temple the l6th day of the month." Sidersky, p. 615.
"The Sanhedrin . . . replaced the firs signals by sending messengers into various Jewish communities to let them know above all the new moons of Nisan and Tisri, in order to enable them to celebrate the festivals on the same days with their coreligionists of Jerusalem." Sidersky, p. 622.
"In the modern Jewish calendar greater variations are found in the lengths of the ordinary and embolismic years, resepectively, especially the ordinary short year of 353 days and the abundant embolismic year of 385 days, issues of the system of postponements inaugurated later by the Jewish doctors of Babylon, but which did not then exist in the first century." Sidersky, p. 633.
"Indeed we know, that the evening of the Jewish Passah must coincide with the full moon (according to the texts quoted above from Josephus and from Philo), and in no case could it precede the physical phenomenon. Note: Sometimes it can happen that due to certain circumstances the new moon is fixed on the day after the next day of the conjunction, and that the Passover is celebrated 24 hours after the full moon, but the contrary is impossible." Sidersky, p. 636.
"The story of the gospels cannot be placed other than between 30 and 33 A.D. . . . The year 33 is the only one in this short interval in which the first day of Passah coincided with a Saturday. Sidersky, p. 636.

The very object of the "postponements" was, according to Maimonides, "Traite de la Sanctification des Neomenies, "chap. VII, 8 and 9 , version latine de Blaise Ugolin dans son Thesaurus, vol. XVII, Venise, 1755, to retard by one or two days the official new moons in such a way as to make them coincide as often as possible with the evenings of the appearance of the crescent in Palestine. Sidersky, p. 644.
"As a matter of fact, the system employed by the Sanhedrin in Palestine was based, as already stated, on the calculation of the true conjunction and the interval of time elapsing between this instant and the appearance of the first outlines of the orescent." Sidersky, p. 643.
"The harvest falls out entirely according to the duration of the rainy season.-After the rains cease the Corn soon arrives at maturity."--Joannis Gottlieb Buhle, "Calendarium Palaestinae beconomicum, " Gottingen, 1785, p. 705.

LEADING JEWISH WRITINGS OF THE PAST

1. MISHINA $\left(100-200 \mathrm{C}, \mathbb{E}_{\bullet}\right)--$ All in Hebrew. A codification of the traditional interpretation of the laws contained in the Old Testament, and the pronouncements of the prophets; and in addition, new laws to govern the new conditions which had arisen since the Old Testoment was written.

Teachers of the Mishan: Tannaim.
2. TALMUD, or GEMARA [including the Mishnah] (compiled in its present form abria 500 C.E.)--largely Hebrew, with some Aramaic.
(a) Jerusalem or Palestinian Talmud: of inferior value in authority as compared to the Babylonian Talmud, for Palestine was then no longer the center of Jewry, due to the persecutions of the Jews in Palestine.
(b) Babylonian Talmud (Written by Jewish scholars in Babylonia; finally compiled c. 350 C. ت.) --one-fourth Hebrew; the rest Aramaic. Legal and ethical commentary to the Mishnah, which is itself a legal commentary on, and codification of, the Old Testament. Thus the Babylonian Talmud interprets the laws of the Mishnah, and attempts to derive from the Mishnaic laws new laws to fit the changed conditions of the times, and also represents the codification of these laws.
3. TARGUMTM (100--900 C.E.; some authorities give 50 B.C.E. --500 C.E.) --all in Aramaic, hence called Chaldee paraphrase, representing both a translation, and at the same time often a paraphrase, of the scripture. Originated in the synagogue with the reading of the Scriptures, and the necessity of translating the Hebrew of the Torah into Aramaic, which was then the vernacular of the Jews of the land. It was thus that the mass of traditional commentary was reduced to writing.
4. MIDRASHTM (100 B.C.E. - -12th century C.E. ; some give 100-900 C. E.) --fourfifths Hebrew, rest in Aramaic. Interpretations and homilies.
(a) Folkloristic Interpretations--ethical maxims and stories.
(b) Legal Interpretations--the legal Midrashim, or"Midrashe Halachah." According to Talmudic statement, Onkelos translated the Pentateuch, and Johathan ben Uzziel translated the prophets into Aramaic from Hebrew.

Leading Jewish Writings of the Past--2.
(usually assigned to the 4th cent, and including today only the Pentateuch)
The Targum Onkelos, the name applied to the Targum of the Pentateuch, is the
Babylonian Targum, while the Targum Jonathan, existing only in fragments
is the Palestinian. Its name, Targum Jonathan, may be a misreading for the Hebrew abbreviation ty (for Targum Yerushalmi), the abbreviated form of the Targum Yerushalmi, or Jerusalem Targum), and it was then believed to have been written by Jonathan.

Beyond the Pentateuch, the Targum is generally regarded as anonymous, although originally both Jonathan and Onkelos wrote Targums to the whole Bible.

The Targum Johathan, originally covering the whole of the Old Testament, but now only the prophets, was put into its final form in the tenth century.

- Transl. fr. . Leman. (fr. Photostat)
"Buanizigster Bericht über die Lehranstalt fid. Wiscenseh oft d. Judentinns in Berlin" erstatlet var Curatorium. mit cinsershattichen Beigabe v. for. E. Baneth:
Mainuni's Keumondsberechung Tel III.
Berlin 1902.

132

1. What we pranced here merely served the purpose to introduce a prepare the finding of the phasis. Jor if one wants to determine it, one must start by findings. the true position of the sun as well as the true position of the moon "the position of the "head" (1).
[Mote 1,p.132: of the ascending Lenore; - P. p. 106.] for the time of the phasis. Then if ane deducts the true position of the sun from the true position of the moon, the remainder (- is called "the first length""

Banish - cont.
p.132 -cont.

2 After having fond the position of the "head" * the position

- of the moon, one also lenows how great is the latitude (2) of the moon, [Mote 2,p.132: See editions compared by me here read IIPD; naturally, it should be دTIT.] \& whether it is a northern or a southern latitude This is called "the first latitude". Note carefully this first lougiturde + this first latitude 20 that both are handy.
- Note 3, 0.132 : MIT is missing in this place in the editions; comp. the Rf, following. $:$ note.]
$0.133=$
Now look closer at the first longitude (length) ${ }^{4}$ [Mote 4,p.133: The words added must, be strikes out one insects in the following sentence..
- Baineth - cont.
f. 133.
the words
presumably they are erroneously taken over from the preceding line.]
stet! If it is exactly nine degrees or still less, one san be sure that it is completely impossible to see the moon, in the whole country of Brace + no further calculation is necessary; if the the first length (longitude ?) anoints to more than 15 degrees 5
 one can he sure that the moons vile be visible in all the land of stael of again there is no reed of further calculation; hut if the firstcalculation is' between nine (6) fifteen degrees, ane must first

Baireth-p. 133 cont.
phasis reckoning (?) a investigate in case one wants to be sure whether it she shall be visible or invisible.

4 This, however, is valid only so long as the true position of the moon is found between the beginning of the "Capricorn" * the end of the "Trims"; if one the contrary, the position of the moons is between the beGinning of the "Cancer" \& the and of the "Archer", the follow ing allies: If the first length (longitude?) is 10 degrees or even less, ane can be sure that -the moon that night will be invisible in the whole P- \rightarrow cannery of Irade; if the first length (longitude:) ${ }^{(7)}$ is monte red the the Center for Adventist Research 24 res

- Baineth - p134.
she will doubter be visible in the whole territong of Dace; but if the first longitude is betiveen ten * tiventy four degrees, one mist first examine with the help of the phasis calculation * investigate mhetoher she can le visible or not.
"In the beginnings of the Churoh, both the Apostles and those who followed after them for a hundred years, a lways celebrated the Jewish passover, as Eusebius testifies, and his ancient ecclesiastical history, and after all, Nicephorus Callistus. But under Commodus, those, who were celebrating the Jewish passover, were condemned of heresy by Victor, bishop of Rome, and by others whom he himself had called into the synod. But the difference in this celebration is two-fold, certainly either in the calculation of the moon or in the rite. Likewise in the oalculation of the moon the difference is two-fold. For either in the new moon to what extent the new moons were employed by the anoients in a triple manner, as we have discussed in the Greek year; or in the embolism. For the new moons are either according to the conjunotion, as of the anoient Atties; or according to the waxing, as the Callppies; or according to the shape of the moon, such as of the Jews, Arabs, anoient Chaldeans, and Damascenes. [In the first it was quite dark; in the sec.. ond it did open itself to receive the sun-beams; in the last it did appear, corniculata, horned.'-- Godwyn, Thomas, "Moses and Aaron," London, $1685, \mathrm{p} .122$]
"Although we have touched in the chapter above something ooncerning the ancient rite of the Passover by the Christians, yet this place demands that we speak more fully concerning this thing. All the ancient Christians were regulating the Passover according to the lunar year, using the canon only for the thing, and thereby thinking that they trod in the footsteps of Moses and the Jews. But there was a two-fold difference. One is, that some sooner, others later, were interoalating the months. For the Asians, who were following the footsteps of John the Evangelist, and of others who were the equal of the Apostles, were using the pure Jewish year. But the Europeans were placing their cyole at the equinox, and were celebrating the Passover on the full moon next after the equinox. This was the difference in the months. Another difference was in the day: because some indeed were appointing the paschal festival on the Jewish 14th of Nisan, others, on the next Lord's day after the 14th of the moon."--Scaliger, "De Emendatione Temporum," pp. 105, 106. Tr.G. Amadon.

The method omployed in very early times in Assyria and Babylomia for determining the first month of the year was a simple and effective one, the principle of which may be explained thus: If we watch for the appearance of the new moon in spring time, and, as we see it seeting in the west, notice some bright star near it, then 12 months later we should see the two together again; but with this difference, that the moon and star would be seen together, not on the first, but on the second evening of the month. For since 12 lumar months fall short of a solar year by 11 days; the moon on the first evening would be about 11 degrees short of her former position. But as she moves about 13 degrees in 24_{4} hours; the next evening she would practically be back in her old place. In the second year; therefore, moon and star would set together on the second evening of the first month; and in like manner they would set together on the third evening in the third year; and, roughly spealing; on the fourth evening of the fourth year. But this last conjunction would mean that they would also set together on the first evening of the next month, which would thus be indicated as the true first month of the year. This when moon and star set together on the third evening of a month, thirteen months later they would set together on the first evening of a month. Thus the setting together of moon and star would not only mark which was to be first month of the year, but if thoy set togother on the first evening it would show that the year then beginning was to be an ordinary one of 12 months; if on the third evening, that the year ought to be a full one of 13 months.

This was precisely the method followed by the Akckadians same 4000 years ago. For Frof. Sayce and Mr. Bosanquet translate an old tablet in Akkadian as follows:-
"When on the first day of the month Misan the star of stars (or Dilgan) and the moon are parallel, that year is normal. When on the third day of tha month 771 san the star of stars and the moon are parallel, that yoar is full."

The "star of stars" of this inscription is no doubt the bright star Capella, and the year thus determined by the setting together of the moon and Capella would begin on the average with the spring equinox about 2000 B.C.

When Capella thus marked the first month of the year, the "twin stars," Castor and Pollux, marked the second month of the year in just the same way. A reminiscence of this cirounstance is found in the signs for the first two months; that for the first month being a crescent moon "lying on its backg" that for the second month a pair of stars.

The significance of the erescent being shown as lying on its back is seen at once when it is romembered that the new moon is differently inclined to the horizon according to the time of the yoar when it is seen. It is most nearly upright at the time of the autwom equinox; it is most nearly horizontal, "Lying on its baok," at the spring equinox. It is clear from this symbol, therefore, that the Babylonians becan their year in the spring.

This method, by which the new moon was used as a kind of pointer for determining the return of the sun to the neighborhood of a particular star at the end of a solar year, is quite unlike anything that commentators on the astronomical methods of the ancients have supposed them to have used. But wo lonow from the anciont inscription already quoted that it was actually used: it was eminently simples it was bound to have suggested itself wherever a Iuni-solar year, starting from the observed new moon, was used. Further, it required no instruments or star-maps; it did not even require a lonowledge of the constellations; only of one or two conspicuous stars. Though rough, it was perfectiy efficient, and would give the mean length of the year with all the acouracy that was then required.
"Foe certain reasons the Jews used a kind of change, or translation of days; which translation, though it were of use in other months also, yot the greatest care was had in trenslating the beginning of their year, or their first day in their month Tisri; and he that shall diligently oalculate these ohanges, shall find that all other translations depended on this firste" Godvyn, Thomas, "Moses and Aaron," London, 1685, 12th Ed*, p. 123.
"Tor oven in the anoient law it is laid down that this is to bo seen to, Vize, that the Pessover be not celebrated before the transit of the vermal equinox, at which the last of the autumal (term) is overtaken (in quo autumalis novissima pars vinoitur), on the fourteenth day of the first month, which is one caloulated not by the beginuings of the day, but by those of the moon (Iunae orsibus). And as this has been sanotioned by the charge of the Lord, and is in all things accordant with the Catholic faith, it camnot be doubtrul to any wise man that to antioipate it must be a thing unlawful and perilous." -Anatolius of Alexandria, "Ante-Micene Christian Library," Edited by Roberts and Donaldson, Edinburgh, 1869, pp. 424, 425.
"Moreover, the allegation whioh they sometines make against us, that if we pass the moon's fourtoenth we cannot celebrate the beginning of the Paschal feast in light (Iucidum), neither moves or disturbs uso" --Anatolius of Alexandria, "Anterlilicene Christian Library," Edited by Roberts and Donalde son, Edinburgh, 1869, p. 420.
"Since there are two equinoxes, spring and autunn, separated by equal distances: and since the festival [passover] has been appointed on the fourteenth day of the first month after the evening [post vesperam] when the moon is eaught from the region opposite to the sum, as even it is allowed the eyes to prove, certainly the sun is found holding a part of
the vernal equinox, but the moon, on the contrary, the autumnal." Ad Macrocosmon, Secunda Fars, Ad Lilios Fratres," Tre by Grace Amadon, Libe VII, col. 1204, Paris, 1611.
"Anatolius cites a comentary on the Pentateuch attributed to the two Agathobulos, disoiples of Aristobulos, conternporary with Ptolemy [Claudius] Philadelphus. 'Aristobulos, it is there said, maintained that at the paschal festival the sum as well as the moon must necessarily have passed the equinoctial point: that the day of the paschal festival began on the Mith of Misan after the eveming, when the moon stands dianotrically opposed to the sum, as aryono can see at the time of the full moon." ${ }^{\text {" }}$ - Caspari, che Ed., "Introduction to the LAfe of Christ," Iro by M. To Evans, Edinburgh, 1876, pp. 8,9.
"Accordingly, it is enjoined that that festival be kept after the equinox, because the moon of the fourteenth, if before the equinox or at the oquinox, does not fill the whole nighto" Anatolius of Alexandria, "AnteNicone Christian Library," Ed, by Roberts and Donaldson, Edinburgh, 1869, p. 416.
"We are commanded to obsorve the full moon of the Paschal month after the vermal equinox, to the ond, that the sum may just make the day longer than the night, and then the moon may afford the world her full orb of 1ighte" --Venerable Bede, "Opera Omia," B. V. ch. XXI, p. 273. London, 1843.
"Accordingly, in this month, [Misan] about the fourteonth day of the month, when the orb of the moon is usually about to become full, the publio universal feast of the passover is celebrated, which in the Chaldaic language Is called pascha." Philo Judaens, "Works," Ir. by Yonge, London, 1855, Vol. III. pe 121.
"For there are two equinoxes every year, the vernal and the autumnal, which are each reokoned by periods of six months" Philo Judeens, "Works," Tr. by $\mathrm{Y}_{\text {onge, }}$ London, 1855, Vol. III. p. 213.
"And this feast [finloavened Bread] is begun on the fifteonth day of the month, in the middle of the month, on the day on which the moon is full of Iight, in consequence of the providence of God taking care that there shall be no darimess on that day." Philo Judaens, "Works," Ir* by Yonge, London, 1855. Vol. III. p. 28i,285.
"This month [Nisen], being the seventh in number and order, according to the revolutions of the sun, is the first in power; on which account it is also called the first in the sacred scriptures." Philo Judaens, "Works," Ir. by Yonge, London, 1855, Vol. III. p. 28/4.
"Again, the begiming of this festival is appointed for the fifteenth day of the month [Tabermacles], on account of the reason which has already been mentioned respecting the spring season, also that the world may be full, not by day only but also by night, of the most beautiful light, the sun and moon on their rising opposite to one another with uninterrupted 1ight, without axy darlmess interposing itself between so as to divide theme" Philo Judaens, "Works," Tr. by Yonge, London, 1855, Vol. III. p. 291.

Arabic Names of Days, -- The Arabs did not, like the Persiens, give special names to the single days of the month, but they had special names for each three nights of every month, which were derived from the state of the moon and her light during them. Beginning with the first of the month, they called --

The fifth three nights (13 th -15 th) bid, because thoy are white by the shining of the moon from the beginning of the night till the end.

Besides, they distinguished certain nights of the month by speoial names, e.ge the last night of the month was called sirar, beoause in it the moon hides herself; it w as also called fahama on account of there being no light in it, and bara, beoause the sun has nothing to do with it. Likewise the last day of the month was called nahir, beoause it is in the nahr (throat) of the month. The 13th night is called sawa, the 14th the night of "badr," because in it the moon is full, and her light complete. (An Faglish version of the Arabic Toxt of the Athar-ul-bakiya of Albiruni) "The Chronology of Ancient Nations", Dr. C. Edward Sachau, Professor in the Royal University of Berlin. Published London, Wm H. Allen and Co. 1879. pp. 74, 75.

Likewise there is a difference between Jews and Christians regarding the leap year, as we shall explain in the chapter on the Christian Fast, if God pernits. If, now, there is a difference between them, and they are willing to accept our decision, we shall consider the two opposition of their two passovers, and shall say, that that opposition at which the moon moves in the riddle part of Spica (Virgo's "oar of oorn") or of Cancer, or the sum is about to leave Aries, is to be rejected according to both syatems, whilst the contrary is to be adopted. To the lover of truth, the correotness of these two assertions will be apparent, if the conditions we have
mentioned are observed. (An English version of the Arabic Text of the Athar-ul-bakiya of Albirumi) "The Chronology of Ancient Nations", Sachau, Dr, C. Edward, Professor in the Royal University of Berlin. Pub. London, Whan Allen and Co. 1879. p. 154.

March. The inumdation of the river Jordan, caused by the melting of the snow on the mountains, is about the ond of this month, at which time, barley is ofton ripe at Jericho, when it is about fourteon days earlier than at Jerusalem. In this month every tree is in full leaf. The fig blossoms about the middle, and the Jerioho plune, toward the end of it. The latter rains commence in this month, and continue into April; after whioh, none are observed until sumer.

April. In April, the heat begins to be extreme. The harvest falls out entirely according to the rainy season. After the rains cease, the corn soon arrives at maturity; but it usually remains in the fields a long time after it is ripe. Barley is ripe in the beginning of April, in the plain of Jerichn: according to Mariti, loc. In all other parts of Palestine, it is in ear at this time, and the ears turn yellow about the middle of this month. (Shaw, 1. c.)

May. In the month of May, the summer season commences, when the excessive heat of the sum renders the earth barren. Wheat is eut down in Way, in Galilee, but it is often not gathered till the first of June, Frequently, barloy is not all out down until this month comnenees. ${ }^{1}$ (Buhle, Johon Gotlieb, "Economical Calondar," page Brunsvick, 1785.)
"During the months of November and December the rains continue to fall heavily; afterward they return at longer intervals, and are not so hoavy; but at no period during the winter do they entirely cease to occur. Rain continues to fall more or less during the month of March, but is afterwards very rare. Morning mists occur as late as May, but rain almost
never. Rain in the time of harvest was as incomprehensible to an ancient Jew as snow in sumer (Rrov. 26:1; 1 Sam. 12:173 Amos 4:7). The 'early' and the 'latter' rains, for which the Jewish husbandmon awaited with longing (Prov. 16:15; James 5:7), seem to have been the first showers of auturn, which revived the parched and thirsty soil, and prepared it for the seed; and the later showers of spring which continued to refresh and forward the ripening orops and the vernal products of the fieldse" Kitto, John, "Palestine," p. 23. New York, 1900.
(a) First Month Feast of Misan Does Mot Agree with Maroh in Palestine. "The feasts which Moses comanded to be celebrated in the first, third, and seventh month, do not agree with the climate of Palestine in March, May, and September." -- Michaelis, John David, "De Mensibus Hebraeorum," Bremen, 1763. p. 17.
(b) Ripe Ears to be Had after the Middle of April6
"But this much ve may with certainty affism, that the fisst moon of the Israelitish year, must alvoys have fallen within our April. It was that moon, in the course of which, in Falestine, ripe ears of corn could always be had, and hence it had the nome of the Ear-Moon, (Abib). On the 26th day of it, which was the second day of the festival of the passover, the first fruits of the ripe ears of corn were to be presented to God. . . . For example, ripe ears may always be had about Jericho after the middle of our Aprili and 0 onsequently, the ear-moon must have alvays fallen within that montho" - MMchaelis, "Comentaries on the Iaws of Moses," Tr. by Alexander Smith, London, 1814, pp. 182,183.
(c) Jewish Feasts Did Mot Interrupt Harvests.
"A harvest-festival falling in the midst of harvest . . . and a feast of tabernacles in the midst of vintage, or before it, or still more, in the rainy season of November and December -- would have been such orying absurdities, that they must have imnediately shown and correoted them-
selves. -- Wiohaelis, "Camentaries on the Laws of Moses," Tr. by Alexander Smith, London, 18y, pp. 208.

Such authorities as Jahn, Horme, Faber, Buhle, Sidersky, and Scaliger, agree with Michaelis that Misan coincides mostly with Apiril and early May, and not with March. Scaliger computes, from both Dionysian and Jewish oyoles, that the passover limits in the times of the Messiah were from April 8 to Hay 6. (Svaliger, Joseph, "De Fmondatione Temporum," Francofurt, 1593, p. 265.) Not until after the Council of Niceea, did a fixed calendar with March passovers beoome permanent in Jewry. This eventually resulted in the well-lonown polemic among Jewish sects over the dates of their festivals - a controversy that continued throughout the middle ages. This history offers conelusive testimony that early passovers did not obtain in the time of Christ.

Agricultural and economieal calendars report that March is the month of rain in Palestine, and that barley ripens quickly, about the middle of April, after the rains are over. (Buhle, Johan Gotlieb, "Eioonomioal Calencar," Brunswiok, 1785). In Centicles 2:11-13, the rain is over when the flowers appear, as at passover times 1 Serm. $12: 17$ and Prov. $26: 1$ show that rain in harvest is unusuals Jor. $5: 2 l_{\text {, }}$, that the Lord gave rain in its season to सis people, as promised in Deut. $11: 1 \sqrt[1]{4}$, and that He watched over the appointed weeks of harvest; Zeeh. $10: 1$, that the people were to pray for rain when in need of it. Hence, from this witness, it must be concluded, that the paschal harvest of Nisan, the month of green ears, or "ear-moon," could not ooincide with March rains, and that it was protected in its subsequently appointed season by the promises of Jehovah.

Maimonides (Jewish rabbi, d. 1204) also supports the conclusion that the passover of early centruries, that is, before the change in the Jewish calendar, followed the spring rains in the land of Israel, and hence did not occur in larroh:
(a) Fast Day Appointed if Rain Failod in Pre-paschal Season.
"If likewise, in the paschal season, or near this time in the land of Israel, the showers have not yet rum out (for in this time the troes bloom in Judea), a fast is appointed, and supplications are involed until ei ther beneficial showers for the trees have falleng or the time of rain ceases" -mlaimonides, "Traotatus De Jejunio," Ex Hebraeo Latine conversi a Ludovico de Compiegne, Paris 1667, pp. 31,32.
(b) Mo Fast After Maroh - Rain Unusual.

WWith the larch period over, indeed when the sun enters the sign called Thurus [about April 20], no fast is appointed, for rain in this time is for on evil onen, since it would not rain straight on from the beginning of the year" - Maimonides, "Hraotatus De Jejunio," Ex Hebraeo Latine conversi a Ludovico de Compiegne, Paris 1667, po 43.

Consequently, according to the testimony of maxy wituesses, Merch was not the ancient passover month. It was, instead, an appointed time for rain. If the rain did not eone in its season to prepare the harvest for the passover fostival, and the people fasted and prayed, and were repentant, showers of meroy healed the land (II Chron, $7: \mathrm{I}_{4}$). If, on the other hand, the irregularitios of the Imar year created discordance between the astronomical moon and harvest, then the following adjustment was made:
(s) A Moon Was Intercalated to Agree with the Harvest.
"But if, by the discordance of the moons with the solar year, the end of the twolve moons fell back so far within Karch, as that, by the middle of the next moon, ripe ears were not to be expected, and of course the feast of the passover could not be celebrated; then they were obliged to reckon this as the thirteenth moon of the preceding year, that is, in other words, to intercalate a moon, which the Jews in their calendar, now terminate Veaddar, or the second Adar. To ascertain when this interealation was to take place, did not requiro astromomical observations of the heavenly bodies: it was a point which every husbandtan could decide by merely lookling at the corm-fields in the nost southerm part of Palestine" -llicheelis, "Com
mentaries on the Laws of Moses ${ }^{\prime \prime}$ p. 207.
Therefore let us reconsider: Moses had it not in his power to adopt a. strictly astronomical solar year by which to correct the lunar, for in his day the Egyptian year was extremely defective; "but," says Miohaelis, "he availed himself of the aid of an economical solar year, which never admitted an error of a whole month wi thout correcting it, and which every husbandman could easily comprohend." Hence, seeing that such was the basis of Jemish rsakoning in early conturies, if one employs equinoetial moon dates with which to solve the orucifixion problem, looking for the death of Christ a moon too ea rly, as in Maroh or early Aprile the true date will be entirely ovorilooked. This has been a characteristic oauso of failure in researoh concerning the orucifixion date.
"It would appear from the title disapplwv which is repeatedly mot with, that the arohons wore appointed for a definito periods and in a Homilia in S. Johannis Natalem, asoribed to Chrysostom, and whioh has speoially in view the state of matters in Italy during imperial times, we exe exprossiy informed that the archons wore always elected in Soptembar, the begimning of the oivil year of the Jews. The following are the insissima verbe of this interesting pas-

113 Inter haeo intuendee sunt tomporvem qualltates et gesta norum; et primum perfidia Judaeorum, qui semper in Derm ot in Fiosem contranoees oxatiterunt, qui oum a Deo secundum Mosom intitium anni mensem Martiven acooperint, illi diee tum pravitatis sive superblae exercentes mensem Septembrom, ipsum novam annum, mumoupant, quo ot monse magistratus sibi dosignant "quos Archontas vooont." Sohurer, Minil, "Thatory of the Jewtsh People, "Second Division, VoI. II, Pe 250. New Yoric, Sortibner's.

Translation: Among these things the nature of the times and general practice are to be looked intor and first, the perfildy of the Jows, who ever stood boldy against God and Moses, who, when from God through Moses, aocepted the month of March as the beginning of the yoax, exercising an act of perverseness or pride they the month of Segtember as the new year Itself, even in which month they appoint for thenselves magistrates, whom they call Archons. Ir. Amadon.

113 This homily (according to Wesseling, De Judaeorum archontibus, ohap. x) is to be found in Chrystoml Opp. vol. ii. od. Paris, 1687. As I have no moans of consulting this edition, I quote from the pessage as given by Wheselinge

Conoerning the Phasis of the First and Newest Moon, and of some others, which, worthy of note, ocour about the time of this observation.

After the moon remains hidden for a certain length of time, and nowhere appears in the sky; not only on account of the nearness of the Sun, but also because she turns the illuminated part of her hemisphere from us, finally it happens that she offers herself to us inhabiters of the earth to be seen in a most agreable manner. And henoe it comes to pass that the moon, after ponjunotion, appears either sooner or later. By me, indeed, intent upon the observation of the moon, between two months, she was seen imediately on the first day after conjunction with the sun: and for this reason I think that I would $\overline{\text { IIX }}$ the price of the work, if I should begin from the first phasis and number in order all the others that follow. But since all those nations which used the lunar year, not only diligently paid attention to the first appearance of the moon, but also entered the number and beginning of every month from it, as is shown from the book of Geminus, concerning the Elements of Astronomy, oh. 6, about the Months, in which he says: Indeed it was proposed by the anoients to oarry on the months according to the moon. And a little after: The names of the days were oalled ry the illuminations of the moon. This onumeration of months and days, espeoialiy, was take on from the oustom of the Jews, so thut, although they had their own lunar oomputation, yet, nevertholess, influenoed by the anolent usage of their elders, they solemnly oelebrated their feast days and new moons, not from the trie oonjunotion of the $l u m$ inaries, but from the first and newest phesis, or appearanoe of the moon, when truly she is first perceived in sight in the slicy after oonjunotion with the sun. But how this observation was edministered, their Rabbis and their more recent chronologers abundantly report. But that the first rising of the moon happens not on the first day after the interlunary period, but at length on the seoond, often also on the third and fourth, is plain to all observing her. But whether this diverse appearance of the first moon, now slow, now last, as with the Jew 3 , so with other nations, oan disturb the plan of the lunar year, whioh they begin from the first phasis or rising of the moon, and easily confound their feast days or not? this I leave to be disoussed and disputed by ohronologers. We only shell fan this question in referenes to the first and newest phasis of the moon, thanks to lovers of the stars: why indeed, the first evening rising of the moon does not happen, in every month, soon, on the first day after conjunotion with the sun; and whether it is possible, after some hours only, to 2 observe and see, after liew Moon, the first phasis of the moon. But the oauses either retarding or advanoing the first vision of the moon, are speoially repeated in Astronory as three. First is the obliquity of the sphere, leading to long or short settings: for in the signs of long settings, namely in Fssees, Aries, and Taurus, it oan happen that the first phasis of the moon is seen a little aifter conjunction. A second oause is, the time of the conjunotion of the moon with the sun, in reference to the northorn limit. Finally the third is, whether the moon mey be rapid in motion, suoh as around perigee. But the first apparanoe of the phasis of the moon oan be retarded so that the moon is first seen in the evening, after the lapse of some days after the interlunary period, if the conjunotion happons in the signs of short settings, such as are Virgo, Lisbra and Soorpio, in which the new moon holds around the autumal equinox, and If she keops above the southern latitude, or is turned around the southern border, and goes a long tardy in motion, in apogee. Therefore, when the three osuses before nemed, ooour near to the conjunotion of the sun and moon, it oan altogether happen that the first phasis of the moon not only may be notioed on the day following after the New Moon [meaning oonjunotion], but also in the evening, on the very day itself, in whioh the syzygy of the sun and moon oocurs before noons as Erasmus Reinholdus in the Commentary on the Theories of Purbaohius, page 155, has demonstrated this. Indeed, from these same prinoiples it follows that it may be allowed to see the newest and first moon on one day, espcoially in the short twilights existiag around the spring time, since they can advanoe this first appearance of the moon not a little. But if the oauses now related that promote the quick rising of the moon do not always conspire tow gether, but one only is wanting, then on the following day after the interlunary period, this first phasis at longth offers itself; and with two requisites laoking, it
oan happon that finally on the third day the first phasis of the moon may fall in sight. But with all three conditions defioient, acoelerating the rise of the moon, so that the moon is turned about in the signs of short settings, in the southern border, and in apogee, then tils first appearance of the moon at last happens on the fourth day after conjunction with the sun; I will demonstrate and explain this variation, as indiaated, not only in the ourrent phasis, but also presently in others, by far the more.

Even Theon Alexandrinus, Alfraganus, Albategnius, and Mesahala think that it was found in ancientitithes by constant and lasting observations that the new moon could be sean after the lapse of 12 equatorial times from conjunotion, that is, fortymive parts of one hous. But I think that in every way these anoient astronomers are orasy over this thing: if perohanoe, the aquses, which I have before touched upon, that delsy the rise of the moon, à able to occur together, so that with diffioulty it rushes in before the third or fourth day after the interlunium. Indeed, although all three oauses already mentioned, that advance the arly appearance of the moon, should at some time or other unite, yet I doubt whet her the nevest and first moon on one and the same day (especially in these northern places, where the elevation of the pole is boreal, and there are wanting the high tops of mountains, for oatching the first vision of the moon) oan be seen; as elso the most rare examples are of the last and of the first phasis of the moon, seon on the same day on the plane horizon. Indeed the anoient astronomers report examples of this leind, and when they happened, on this account they alled the day elvnvaiveavold and new. In like manner Pranoisoo Patritius, liber 20, Panoosm. page 114, similarly reports the case ooncerning Vespuoliyswho observed, on one and the same day, the old and the new moon, but, as he adds, past the equinox: when, also, he subjoins these words: But it seoms that it could not ctherwise heve happened then in air free from vapors, by Par more than with us. And this I also freely concede, and believe to be true

But it is of importance that the first phasis of the moon was observed by me, truly on the following day, inmediately aftier the oonjunotion of the luminaries, without doubt, in the year 2644, on the 8th day of April, S.N., the 6th day of the week, whioh happened the day before, indeed not in the evering, but in the morning, about the fourth hour: an observation of this kind, in our place, is a rare happeling, as they know who give attention to the work of observation. Indeed, seoing that the new noon very racely is wont to be seen before the third day after conjunction. But beoause this first phasis was seen so quickly after oonjunction, for this reason it happened, sinne two sonditions, already mentioned, and causes of the more rapid appearance of the moon were here present. Por first, it was the time of the vernel conjunction in oither about the 18 th degree of Aries, and the moon in the time of her appearanoe stood forth in the 13 th degree of Taurus, surely it the signs of long settings, and indeed, after Pisoes, espoially even in Aries and Taurus. Then also, the moon was rapid, around perigee. From that cause, therefore, it happened that after the lapse of 40 hours, the roon could be seen after the true conjunotion of the moon; and indeed, she was, up to this time, suffic aiontly elevated above the horizon. Yes really, although she had stood to three or four degrees nearer to the sun, nevertheless she rould have been seen: that is, although the true oonjunotion had heppened the day before, not before, but after noon, this first phasis would have appeared on the next day. Besides, if the moon, at this time, had held, not around the southern limit; (her latitude indeed was almost 4䂞 degrees austral) but around the northern border, the first phasis of the moon oould have loen seen within 24 hours after oonjunotion. In truth, these three requisites together (as now it has been spoken of) so that the mocy may be in the signs of long settings, in perigee, and in the northern border, olecrly in the time of conjunction, or of the appearance, very rarely concur: if rerohenoe, only one or another may be wanting, that delays and impedes its attendance, by whioh the moon oan the less be seen on the first day after interlunium, although in that time (whioh is not impossible) the sky may be serene, and diligenoe of observation may not be wanting. Yet, within a period of nine years, these three requisites with difficulty break in together, even though all the now moons are examined, except around the year of Christ 1654, in the month of April and May, when the first phasis of the moon could be seen so quick, and indeed on the very day apter the oone junction with the sun, if only a oloudless sky appeared in heaven. Cortainly two requisites often are able to meet at the same time in the coitus of the moon, as also happened in the observation just now related, so that the moon in the ascending signs, and in perigee, either also around the northern border, and is turned around in the ascending signs, from whenoe the moon is seen earlier, after 24 hours, or even more, elevated above the horizon, according as the conjunction of the luminaries happens; although even this rarely happens, and oertainly not in every year. But this could have happened in the year 1646 about the time of the vernal equinox, if then the air were olear; since also in the year 1652, in the month of Mar6h and April, the first phasis of the moon takes place earlier, for two requirements are retained as being present in the time of the intermenstrual moon, as also it happened here. But yet in the preceding years, the conjunotion of the moon and sun does not take pla0e around perigee, nor yet around the northorn boundary, although it happened in the sscending signs; this, whioh is necessary to be performed annually.

From which things it can be conoluded that a phasis of this kind, suoh as was observed here, is more rare in vision. For although it may happen that two requisites are present, yet the evening may not always be given olear, and therefore the aspect of the moon is impeded by olouds rushing between, as I have frequently found it.

But in order, therefore, that the things may be more established, which I have brought into the heart of the matter concerning the causes of a more rapid or more tardy first appearance, or of the sensible showing of the light of the moon, in reference to this in this place let me set forth the various observations, in which time I have indeed sought this first phasis of the moon, immediately on the following day after conjunotion with the sun, when the sky was clear, but, with the exception of one village, up to the present time, I could not yet notioe it. For hereupon the oauses will sufficiently appear whioh have delayed the more rapid first rising of the moon at one time [or another]. In fact, from the sth day of Apri1, of the year 1644, when I saw the first phasis of the moon, on the following day, soon after coitus, repeatedly I raised my watching eyes, and have been aroused at the aspeot of the sky, whether I could see the form of the most reoent moon, also at one time, or another day after the new moon. But, with what sucoess? Listen: first of all, on the 5th day of June, of the year 1644, I could not at all see the horns of the moon in the evening, since indeed she was in Gemini, but besides, was being delayed in the southern border, and beyond perigee. So also on the 5th day of July of the same year, I could not catoh the first phasis of the moon on the next day after conjunotion. And neither is this wonderful, for indeed, there was plainly present no requisite of an early appearance of the moon. And whence neither on the following day of the 6th of July was it permitted to desory the first horns of the moon, so that not before the third day after oonjumotion, intruth on the seventh day of July, did it then happen to see the first moon; and indeed the one nearest to the western horizon. Yes, also, in vain have I sought the first moon on the following day in the rest of the intermenstrual moons of this year (as anyone not unsldiled in the oelestial caloulations easily knows) since the conjunotion of the luminaries happens in the signs of short settings.

Similarly, in the year 1645, on the 28th day of March, third day of the week, after the lapse of 24 hours following the conjunction of the 1 uninaries, indeed, in the evening, I diligently sought the first moon, but she was not found; sinoe, in faot, there was present only one requisite, namely, the oourse of the moon in Aries, in a sign of long settings: on the contrary, she was obtaining a southern latitude, above 4 dogrees, and besides, was going along in apogee, that is, was most remote from the earth. But if indeed, those two impediments had not hindered, oertainly I could have easily peroeived in sight the phesis itself at this time.

In the year 1645, on the 27th day of April, the 5th day of the week, again in the eighth hour of evening, I gave attention to the first appearance of the moon, which Pinally did not deceive my hopes since I oaught it, immediately on the next day after conjunotion, in the form pointed out in whioh it is discerned here, and was observed in the year that is past. In faot, the oause of that earlier rising is twofold. For one reason, beaause the moon stood in Taurus, in a sign of long settings; for another, because she was in perigee. And moreover, beause the true oonjunotion of the sum and moon, on the 26th day of April, broke in suffioiently early, so that at this time in which she was seen by me, already 42 hours had passed from the conjunction of the luminaries. For verily this was not able to happen more quickly, for the moon was eatablished in the greatest southern latitude.

In the place of conclusion I will advise one thing thus far, in reference to the mountains of the moon, which are the ground-work of the oourse of the presiding phasis of the moon, of which mention also has been made in the sixth ohapter above; since those also beoome plainly visible in derinite times in the periphery itself of the moon, in order that the Peritetios may finslly lonow both the force of our demonstrations by whioh we defend the serious thing, and on the other hand, the foole ishness of their argumente by which they oppose our opinion.

CAPUTX

Concerning the Phasis of the Horned Cresoent of the Moon

Beoause now I think that suffioient has been said before in the preceding chapter concerning the nascent and first moon, and some causes of its more tardy appearanoe, it may be permissible to affirm also that, in its owm way, concerning the horned phasis of the moon. For we oall the horned moon that phasis whioh some of the anoients is the second moon, for the reason that on the second day after the conjunotion of all luminaries, she is seen very early, and follows the first moon. But beoause she is not always able to be seen on the second day, all those oauses oan hinder, which do not allow [one] to see the first moon on the first day after conjunction. But the ohief oause is when she is turned about in the signs of short settings, of which kind are: Cancer, Leo, Virgo, Libra, Soorpio, and Sagittarius. For although the moon may be in perigee, and around the northern border, yet if she does not approach a sign of long settings, in vain the horned moon may be expeoted on the seoond day. For an example to us oan be the and day of Ootober, in the year 1644, when the horned moon on the seoond day after conjunotion, by no means could be seen, since she was in the sign of short settings, about the beginning of Soorpio, and at the same time was in apogee; and although she obtained the greatest northern latitude, yet, the primary rea quisite being deficient, she was nowhere then showing up in the sky. And it is not necessary to explain the thing by many examples, since the thing is olear in itself, and not otherwise to be understood than by this stipulation: the first and second phasis of the moon in vain is sought after the first and second day of the acoome plished new moon unless the three requisites reviewed in the ohapter above were present at the time of conjunction, or of the appearance of the moon, especially in the evening a little after the setting of the sun.

But, on the other hand, if the day is oloudless, and the sun shining very bright, it is not impossible to see this second moon on the next day after conjunction, although no requisite may be given; for this can be accomplished either by the use of the renowned Optiole Tube, and by the brightness alone of the luminaries, animated and uninjured, such as I myself in distinct times have so seen the moon, and also have shown the same to others. And indeed, in the year 1644, on the 6th day of July, I oould well disoern the second, or horned moon, in the olear light of the shining sun, in the afternoon hours, when, nevertheless, on the following evening after the setting sun, not yet was given the faculty of her being seen-as let me be silent in reference to other examples. From these [illustrations] brought together it may be permitted to deoide with suffioient oertainty that often, nay, almost always, phases of this kind are better able to be seen in the day light than in the evening after the setting of the sum. Nevertheless this distinction remains, foremost, between the moon seen by day, and by night, that we cannot so acourately delineate the phases of the moon by day, or in bright vision, or those seen in the Optiole Tube, on acoount of the greater light, in deed, surrounding, and the nearness of the sun, beoause the less light of the moon refleots somewhat more obsourely; since also here is the place in this well-lonown saying: "The greater light shines less."

Laws were established that Row Hasharach coned not be on Suv. Wudior Fr. The first day if Passover coned not be on Mo. Wed or Fr. day If slaviots coned in to firs Thu or Fr. Purim could wot br on Sat. Mo or wed. Mom kippur could not be on Su. Tu. or Fr.
\#2 Passover is observed in the month of Nissan in the spring. The "eboN" (leap year) is formed by adding one month, if the season of spring hart come yet before the monte of Nissan, On the Talmud there
are additional reasons for the ethos ouch as 1) fruit trees not becoming rife 2) roads berg spoiled because of rain (3) bridge being broke
4) Passover Stoves being broken because of ruin s) Disk exile making it hand for those who are as a com \& Jerusalem 6) sheep, that wevenit born yet of bring The Pascal lamb. 1) Pigeons that werent born yet o be brought for sacrifice.
\# 3 . neleavenetbread is to be destroyed and not be sen thrower Pasouerempor on ace courdence

Talmudic Rabbis the unleavened bread can be sold before Pasoever \$o a non-few, and after Pasoures it is bought again from the son- fens

 בפור ודחו כל המועדים טוטנם ומפני ור ור המלטודיים לפעטים מקדשים החדש ועדיין הישן נראה ולפעטים הרוח החדש בבר נראה

 אחר ולפעמים טתאחר ביום אחד.

 עעשה העבור ולא טטבה אחרת אבל התלטודיים רוטופו שטונה

 יראה לך שאור בכל גבולך שבעת יטים וכפי וד חייב כל ישראל
 והתלמודיים המציאו ערטנות ומוברים בתיהם ויקביהם לנוצרים ואחר עלו שבעת ימי טצה עוד שבים ולוקחים בתיהם ויקביהם עם כל חמציהם
 ורצון הבתוב בוה אחר בוא בוּ גוף השטש אחר האו הופק כמו שמון כתוב גם בוטן הקטרת בם' שמות סי' ל' ובהעלות אהרן את הנר הנרות ב"ב יקטירנה וידוע עי אין וטן העלאת הנרות אלא אחר עריבת השמעש טעצם הצהרים עד שיבוא גוף השמש אחר האופק וכבר חכמינו

Page, from the book "Lebosch Malchoth"
Published in 1866 by Prof. Adolph Neubauer from MSS found in the Imperiall Library, St. Petersburg. Mordecai Bar Nisan is quoted as authority for the fixing of the Paschal feast by the barley harvest.

See lines 11 \& 12 from top for the statement that the "ebor" is made is the harvest is seen not to be ripe.
LXXVIII. The Sun and Moon: the Waxing and Waning of the Moon.

And the names of the sun are the following: the first Orjârês, and the second Tomâs. And the moon has four names: the first is Asônjâ, the second Eblâ, the third Bonâsê, and the fourth Erâe. These are the two great luminaries: their oircumference is like the oircumference of the heaven, and the size of the oiroumference of both is alike. In the oiroumference of the sun there are seven portions of light whioh are added to it more than to the moon, and in definite measures it is transe ferred till the seventh portion of the sun is exhausted. and they set and enter the portals of the west, and make their revolution by the north, and come forth through the eastern portals on the face of the heaven. And when the moon rises oneofourteenth part appears in the heaven: [the light becomes full in her]: on the fourteenth day she acomplishes her light. And fifteen parts of light are transferred to her \#till the fiffeonth day (when) her light is acoomplished, eooording to the sign of the year, and she becomes fifteen parts, and the moon grows by (the addition of) fourteenth parts. And in her waning (the moon) deareases on the first day to fourteen parts of her light, on the second to thirteen parts of light, on the third to twelve, on the fourth to eleven, on the fifth to ten, on the sixth to rine, on the seventh to eight, on the eighth to seven, on the ninth to six, on the tenth to live, on the eleventh to four, on the twelfth to three, on the thirteenth to two, on the fourteenth toncalf of a seventh, and all her remaining light disappears wholIy on the fifteenth. And in certain months the moon has twenty-nine days and once twenty-eight. And Uriel showed me another law; when light is transferred to the moon, and on whioh side it is transferred to her by the sun. During all the period during which the moon is growing in her light, she is transferring it to herself when opposite to the sun during fourteen days [her light is acoomplished in the heaven], and when sae is 111 umined throughout, her light is acoomplished full in the heaven. And on the first day she is aalled the new moon, for on that day the light rises upon her. She becomes full moon exaotly on the day when the sun sote in the west. and from the east she rises at night, and the moon shines the whole night through till the sum rises over against her and the moon is seen over against the sun. On the side whence the light of the moon comes forth, there again she wanes till all the light vanishes and all the days of the month are at an end, and her oiroumference is empty, void of light. And three months she makes of thirty days, and at her time she makes three months of twenty-nine days eaoh, in which she aocomplishes her waning in the first period of time, and in the first portal for one hundred and seventy-seren days. And in the time of her going out she appears for three months (of) thirty days each, and for three months she appears (of) twenty-nine each. At night she appears like a man for twenty days each time, and by day she appears like the heaven, and there is nothing else in her save her

Charles, R.H.. "The Aposrypha and Pseudepigrapha of the 01d Testament," pp. 243, 244. Oxford, 1913.

[^2]"By means of the lunar cycle the new moons of the calendar were indicated before the Reformation (that of Gregory XIII). As the cycle restores these phonomen to the same days of the civil month, they will fall on the same days in any two years which occupy the same place in the cycle.
"Encyclopedia Britannica," Article Calendar (Lunar Cycle).
"The cycle is supposed to commence with the year in which the new moon falls on the list of Jamary, which took place the year preceding the commencement of our era. . The new moons determined in this manner, may differ from the astronomical new moons sometimes as much as two days, because the sum of the solar and Lunar inequalities, which are compensated in the whole period, may amount in ertain cases, to 10 degrees, and thereby cause the new moon to arrive on the secand day before or after its mean time." "Encyclopedia Britannica," Article Calendar (Lunar Cycle).
"The new moons indicated by the epacts also differ from the astronomiccal new moons, and even from the mean new moons, in general by one or two days. In imitation of the Jews, who counted the time of the new moon, not from the momeft of the actual phase, but from the time the moon first became visible after the conjunction, the fourteenth day of the moon is regarded an the day of full moon. But the moon is in opposition generally on the 16th day; therefore, when the new moons of the calendar nearly concur with the true new moons, the full moons are considerably in error. The evacts are also placed so as to indicate
the full moons generally one or two days after the true full moons; but this was
done to avoid the chance of concurring with the Jewish passover, which the
framers of the calendar seem to have considered a greater evil than that of cellebrating Easter a week too late."
"Encyclopedia Britannica," Article Calendar (Dominical Letter).

Doit forget that Clavius reforms that one of che Nicaean rules damanded that the calendar uniat use
"Anatolius oftes a commentary on the Pentateuoh attributed to the two Agathabuli, disoiples of Aristobulos, contemporary with Ptolemy Philadelphus. Mristobue los, ' it is there said, 'maintained . . . that the dsy of the paschal festival began on the leth Nisan after the evening, when the moon stand diemotrically opposed to the sun, as anyone can see at the timo of full moon. ""-Caspari. C.E., "Introduotion to the LAfe of Christ, "page 8.
"Quum duo sint aequinootia, veris \& autumi, aequis spatils diremptas \% 14. die mensis primi sit statuta solemitas post vesperam, quando Luns Soll opposita e regione deprehenditur, siout etiam ooulis probare 1icot: invenitur utique vernalis aequinootil partem Sol obtinens; Lume voro e contrario autumalis... Quartamdeoimam onim Theophilus oportere censult videjh, oum pleno orbis sul edreulo, eodem momento oritur, quo Sol ocoidit. -oNancol, Nio., Analogia, Socunda Pars . . . Do Correotiono ann Grogorlans, Ad L4lios Fratros," Col. 1176. Peris, 1611.

Translation: Since thero are two equinoxes, of the spring and autum, soparated by equal speces, and sinee the festival was appointed on the lith day of the first month, after the evening at whioh time the moon is caught in the region opposito to the sum, es oven it is permitted for the eyes to proves the Sun certainly is found holding a segment of the vernal equinox, but the moon, on the contrary, of tho autumal. . For Theophilus deoreed that the fourteonth ought to be seen when the disk In its oirouit rises in full at the same moment in whioh the sun sets,-wNanoel, NIoolaus, "The Analogue, Second Part, conoerning the oorrection of the Gregorian Year, Acoording to the brothers Lilius." Col. $\frac{2176 . ~ P a r i s, ~}{1204}$.
"The Prutenic Tables were made the basis, and the epaots wore all diminished by unity, In other words, Luna XIV was put one day later, to remove all danger of Baster ever being celobratod on the day of the astronomioal full moon, as was forbiddon by the old canons, "--Hagen, J.G.. (Vatioan Observatory), "Catholie Enoyolopodis, art. "LAlius:" Voi. IX. p. 251. New Yoric, 1910.
"Wurm, finally, expresses his opinion that wo should not go fer wrong if, in order to find the flrst day of the month, eocording to the old Jewlsh style, by the noon's phase, we add 24 to 48 hours to the true new mocn astronomically caleulated: and on page 279 he lays dom the rulo that we have on an everage to add $11 / 2$ days. This prinoiple has been accopted and oarried out by Ideler, Wieseler, and nost ohronologists. "-Caspari. Ch. Ede. "Introduction to the Kife of Chridt." page 15.
[It is ovident that others, besides Scaliger, consider that the Jows used an older moon than the firet oresoent. by whioh to begin thelr monthe.]
"Sed neomonia Judaica, Arebloa, \& Samarstana exoedit modum $\phi \dot{\sigma} \sigma \in \omega$ w plurimun, ita ut oivilos neomenlse monsium lunarium sint tripliols goneris: Atticoe ónò rîs
 Xímatos a tortia, inquam, die."--Soaliger, Josoph, "De Fmendatione Tomporvan" page 6. Franofurt, 1593.

Translation: But the Jevilh, Arable and Sameritan new moons comonly exoeed the sise of the phasis, so that the oivil now moon of the Lunar months are of three leinds: the Attio new moons are from the ooajunotion; the CallppIo, from the waning of the moon; the Jewieh, Samariton and Arabie, from the shape of the moon, from the third dey, I sey.

 105. reokoned
Translations For the new moons aro acooraing to the oonjunotion, as of the anolont Attlos, or according to the light, as the Calipplc, or acoording to the shape of the moon, such as are the Jowish, Arabic, and anolent Chaldeeans and Demescones.

Plavy of thind day delay $=108$
Digitized by the

Scaliger
8. For dewars the Olympiad was in full nary, aud was celebrated on the $15^{\text {th }}$ of the mouth.
08-
For those who wish to correct the Passover with astronome real tables, alctiongle they are very learned, yet try do not know o What it is $1 \overline{0}$ not in order the lunar year, erin whose lengete and time of mean syzygies they linavo to the fingers breadite. But trey shore kuoro that it is ane ting lo collect mean Lunar conjmetions from the abacus, and it is another Ir plant the nitervels of the moons advance upon the calenior. For the order of the days of the wells rules this thing, not the astronomical abacus.

77- In spading of the choldeaus, Scaliger adds this:
"And neat, brave se their new mavis where not the same e ar wilt the eneipprico. For they [the elioldears] were beg turing [thin year] from the harked wore, as ale the saselm walitus in ancient tires, ard even to tors day." [Scaliger ahvarpClasses the Gens, arabs, chaldacaus, and vaveareeves as wong the same kind of new noon in slating their mouths, I
281- Itwelius Gedamum, 1647.
"But we earle the horned mover tat phasis, which $2 \overline{0}$ some of the aments is the second noon, hearse ane the siceord day after the conjunction of ace lunnuaries
281- Hwelius there offers this rule-
" Uris pot nequsary to explain e the thing by may

 second pore hound of the moon in vain e is sought on the first aud second day offers the conjunction unless the three requisites, recounted in the forveqint chapter, are foresent in the live ${ }^{\prime}$ of eoujinction, or of the visible moon, coops, Especially is The evening, a stele of ter surest.

Fragment from Canow Paschatis, of bishop Quatalius of Saodicea, 3 rd centüry $=$ Eusib. Nist. Eeal. V11. p, 322,323.
 Liibuted to the hirs Agpathobuloo, diseipeles of ariatobucho, conleñporary vilte PLolenuy Philadepphus. "Aresbobulus,' rt is there sacod, 'manitaiued... That the day of the pasobial featival began on the 14 th viesar afler the everivey, whon the moon sebainds diametrioally offoosed iv the suil, as anyous ear see at the time of fuce wovar." "- Cappari, p, 8 .

$$
\begin{array}{rl}
1 \text { Kimg } 4: 7 & =\text { no molereababor } \\
\text { mum. } 20 & =\text { ab } \\
\text { Egels. } 26: 1 & 29: 17 \quad 31: 1 \quad 32: 1 \\
46: 4-6 & =\text { mime offoings }
\end{array}
$$

Anatahins - concurning paschal festival $=$ festiril whs alvags abservex afhir the Equinte; and "that on the 14 th Nisurs the moon was necessarily fuee, and ine apposition.
(- with the sun; from whive foelows with equal nesewaity, veluat the $13 t$ of Risaxe, and consaquently the first doy of each month, coincided viete the new neoon. "- Easpari, p. q.
"Galen, barn at Perganmus in Asia Winor, about a,p,131, says, "Wieth thove in Palestine. The Evelve mouichs Logether number 354 day. But sinces the thue from ane eonjination Lo another requires the addicion of anather hoef-day L_{0} the 29 dayp, the ho noonths Logether neusber 59 dayo, whiek they divide inlè hoo mequal parlé, and asaign to the ane nowte 30 days, and to the ather 29 . Since They arrange the mondes ive this nenver, They are come polled to madoe an intereatary neonth, when otu deficiency of the forevious eqears, combted loqether, nealses ufo the thine of a montw:"' Easpari, pp. 9, 10.
(1'Comment. I. in Nippooratio Efiodene, Ed. Kïhn, t. Xv11. p. 23.
4. THE WIERTS TRANSLATION OF THE MOON FOR TISRI 1, 184 4. -
"She Prutenie Tables were made the basis, and the efoocts whe all dimuished by unily, in other coordo, Suna XIV wos pont Que day baler, to remave all douger of Eaales ever being eelebrato ou the doy of the asbtronnieal Jull wiovir, as was for bidder by the ald danoub."
g.e. Atager Ualíáa O faervatory

Catholic Encychpedia -
arleele "Silius", Uol. $1 \times, p .251$. Mew Yorls', 1910.
Erasmus Reimhold (Vittenberg, 1554). Copernien's inmartä vopls $=$ "De Revolutionibus Orbiun eorlestinn." enabled Esaanus Theniliold to coufule his Pruleñie tobles, whivele wave ruade the basis of the Iregforiau refarue. Same Refurence.

Beginning with Esarhadion, we can trace in the letters the actual evolution of a more scientific attitude and the progress of discovery, due to known men whose very words we possess (Leroy Waterman, Royal Correspondence of the Assyrian Empire 1930-36). The simplest form of report is represented by the letters of Nabua, of unknown date, who informs the king whether or not he saw the moon on the 29th of the month; obviously the beginning of the next month is still determined by the actual appearance of the moon, while calculation of the astronomical new moon issstill in the future. He also reports whether on the 13 th, 14 th, and even 15 th, sun and moon have been seen together--another proof that the new month was fixed by actual observation (Ibid., Nos. 817 ff). . .

An important discovery had been made--that solar eclipses were to be expected at the beginning of the month, lunar eclipses in the middle--though the inability to calculate the astronomical new moon left the exact time uncertain within the threeday limit of error. . .

About the beginning of the fifth century there appeared the first great Babylonian astronomer whose name has survived, Nabu-rimanni, son of Balatsu, "descendant" of the priest of the moon-god Sin, who witnessed important documents in 491 and 490. His system is explained in a textbook, written or copied in early Seleucid days, which gives directions for the construction of such lunar computation tables as are preserved from late Seleucid and early Parthian days, and also in eolipse tables from the same periods. Strabo of Amaseia remembered him as Naburianus and gave him the deserved title of "mathematician," for, while all the tables are based on observations, the details are the result of most elaborate calculation. Olmstead, A.T., JAOS, XLVI (1926), 87; Kugler, Die babylonische Mondrechnung (1900), pp. $55 \mathrm{ff} ., 115 \mathrm{ff}$. (with)

The problem set by Nabu-rimanni was the true date of the new or full moon, which was connected the determination of lunar or solar eclipses. Thus we have two sets of somewhat similar tables, those dealing with the moon' positions and those with the title "of day 14, " when at full moon lunar eclipses are visible.

Oimstead, A.T...Babylonian Astronomy in The American Journal of Semitic Languages and Literature, p. 113 ff . University of Chicago Press.

Sualoger, Prolog, e -
But'y we follow the Evrofreans The frasaover wos oflen wandering from Xantheos, or our Qpile in the tives of Chnist. For in the 2-4-5-7-10-13-15-16-18 jear of ihe gewnble eycle the Pascha was falling allogither in the mante byolrūs, even in our Neureh. paut the plou whah offor

For withont ame conbroversy chint ate the pansover at the and of the 18 th of Niover, the 14 Hoberiequméneat that is
 of the fofite day of the weels the sicte fewish mele dey was coniny orl, ever da sumset of the day of Deves, of $\frac{1}{1}$ which the 'sobboth entered, even Miaac 15 , that is, the Solen Taschal, Sherepre The whole of hisare 14 iveterveued hetween the surd of the Cordi supper aui the begnining of the Solene Paschal.

The following reference taken direct from the Mishna--
R. Sh.2.6. How do they examine the witnesses? The pair which comes first they examine first. They bring in the elder of the two and say to him, "Tell us how thou sawest the moon: facing the sun, or turned away from it? (Note: Before the sun or after the sun?) to the north or to the south? how high was it? to which side was it leaning? and how broad was it? If he said, "Facing the sun," he said naught (Note: It was either the old moon that he had seen, or nothing at all. Brub.4.2). Afterward they bring in the second witness and examine him. If their words are found to agree their evidence holds good.
R. Sh.3.1. (Note: This Paragraph logically follows 2.7.). If the court itself and all Israel had seen the new moon and the witnesses had been examined, yet night fell before they could proclaim "It is hallowed'" then it is an intercalated month. (Note: That day, although manifestly the first of the now month, is treated as the 30 th day of the preceding month). If the court alone saw it, two (of them) should stand up and bear witness before them, and then they may say, "It is hallowed! it is hallowed."

Erub.4.2. Once they did not enter into the harbour until nightfall (on Friday). They said to Rabban Gamaliel, "Is it permissable for us to land?" He answered, "It is permitted; for I have already made observation, and we are within the Sabbath limit before nightfall." (Note: With some simple telescopic device (Gem.43-b) for the caloulation of distances. He was noted for his astronomical knowledge.)

JUDAISM IN THE FIRST CENIURIES OF THE CHRISTIAN ERA -- The Age of Tannaim, by George Foot Moore (Harvard), Vols. I and II.

Vol.II, page 22. In old Israel the now moon--the day after the orescent was first sighted in the sky--was celebrated by sacrifice and feasting (1 Sam. 20:18-34) and, as may be inferred from 2 Kings $4: 23$, by the suspension of every-day oocupations. The prophets couple it with the Sabbath, regularly naming it in the first place ("new moon and Sabbath"). Cf Col.2:16. Amos 8:5 shows that trading was prohibited on both. In Hos.1:13 and Is. $1: 13$ it stands at the head of the list, preceding the seasonal festivals, and was, like the Sabbath and those festivals, the occasion of a consecration, as in Is.l:14 (A.V. 'solemn assembly'), a proclamation calling the people to observe the day. The offerings appointed for the new moon (Num.28:11-15; Ezek.46:4-7) exceed those on the Sabbath, and in post-exilic sources (Chron. Ezra, Neh.) it maintains its precedence in the order of enumeration. No express prohibition of labor on the new moon is found in the Law(Num.28:11-15 has to do so solely with the offerings for the dey), nor is a holy convocation appointed for it, but this is true in the passage cited of the Sabbath also. In later times at least labor was not suspended on the new moon. (Note: After the adoption of an astronomically fixed calendar, about the middle of the fourth century, the coming new moon was announced in the synagogue on the preceding Sabbath after the reading of the lessons). The new moon retained its prime importance for the fixing of the calendar with the dates of all the annual festivals, but the religious observance of the day outside the ritual of the temple seems to have early deolined.

Sanhedrin 18 b . When the early seed and the late seed blossom simultaneously, then it is Adar, and if not, it is not Adar" (Note: but still Sebat). As a result of this, we read further on the same page, the Rabbis proclaimed the year a leap-year. As the seeds were not ripening yet, they inserted a second Adar. The first Adar could not be regarded as Adar proper, on agricultural grounds. We see from this that the time of the sprouting of the ehp ${ }^{h}$ (as well as thehibz) was the month of Adar. Cf. also Jerushalmi Sanhedrin, 1,2, and Rosh haShanah, 2.5. Quotes from quart. State., Pal. Ex. Fund, April, 1909.

Lewigh Wating - Sulse 15:1; 1 Whac.13:42 ace publie aclo dated sinve 143 B.C. about this same tive, 200 yhan offier inve of olveander, nathem aticians come puled for the gews their conjunstions and
Dating phases in Cominus, Aiffarehus "Gerusule by year. Waccubean purcod.

Hhim era engraved an eains doted Theyogit yedr of sinionis reign. Suha shanes the date.
Interealated by the barbey-harvent. This was a good rule - merely deternined the localion of the monte of Nisan - Set off the Feant year.
The don was "obserued" and also eabculated.

Sanhedrin aud pricolo.
Evidences of jinurde astronony before Cluint, Nanaciar Evidenessince - var-somue. Sa, Larailes
Lulian Calader
Xo reconds of dolings mulie vers lalé.
Kolurs and noves - 1582

This method, by whine the new moore was used as a ked of pointer for deterring the secure of the sue to the neighborhore of a particular star at the and of the orlar year, is quite malice anything that cammentalon of the ancients have sufforoned theme is have need. But we know frow the ancient thecriptione already quoted that it was achīally used; it was emmently simple; it was bound lo have suggested itself wherever a luni-solar year, slating from the observes new mon, was wised... Though rough it was perfectly effrizent...

But it had ane drawback, which the ancients could not have been expected to force. The effect of "Precession,"... would be to throw the begriming of the fear, as tItus deternived, gradually later and labia in the seasous, - roughly sfosibing by a day in every, seventy years, and the nne eave, no doubt, when it was noticed that the terrestrial seasons no longer bore their tiaditernal relation to the year.

There is a set of symbols repealed over and over again e an Babylonian neomnnents, ans always given a position of eminence; - it is the so-called "Triad of Gears" a crescent lying on ils bach and live shit near it. They are seen very destucty an the bombory shone from the Sowrve, - the pechere on page 318, and also nimediality above the head of the Sungod in the bablet from suffr, on page 322 . Sher signifreance is now clear. o. The "triad of three giro", hen, is supply a pectise of what ne u saw, year offer year, in the sunset shy at the beginning of the first month, six thonsauk years ago. It is the earliest necord of an observation that has cove dover is us il bize by he Chicofofferenist Re art? ? 323

Wannder, balter Edward. F.R.Q.S. Asbroñony of the Bible. I. Seoley Chabry C. Sonvon. 1908. Call n_{0}. QB $19 . \mathrm{m}_{3}$.

The Hebrevos used three words in Iheir nefercuees bo the moon, the first of which, choderh, dirives frome a root' meannin' 'to be new,' nudieales the frot Wat the new neoore, as achíally observed, grvermed their calersor.

Generably sfoedsury, chodesh is employed where Eicter refereuse is urado to the shappe or newnens of the erescent moon, or where "moutte" is uisud in any precise way. Ihis is the word for "monll" kufoloyed throwghont by the farophet Ezclaiel, who is so precise ive the duting of hio propheeies. Pages $8^{2}, 83$.

$$
2
$$

Gegort

$$
\begin{aligned}
& 213 \quad \frac{308}{2.3} 95 \text {-ggales } 1805
\end{aligned}
$$

$$
\begin{aligned}
& 158216001700180019.00
\end{aligned}
$$

$$
\begin{aligned}
& 30^{k_{k}}=4-5^{2}=E g^{2} 111 \\
& 6^{\text {ut }}=6-5^{2}=\varepsilon_{g} \cdot 8: 1 \\
& 7^{\pi_{0}}=5-10^{2}=\xi_{g} \text {, 20:1 } \\
& q^{-h}=10-10^{\circ}=\varepsilon_{g} \cdot 24: 1 \\
& 11^{\text {th }}=7-11^{2}=\xi \cdot 26: 1 \\
& 10^{\text {th }}=10-12^{\circ}=\varepsilon_{\text {g }}, 29: 1 \\
& 27^{u_{u}}=1-1^{2}=\varepsilon_{g} \cdot 29: 17 \\
& 11^{t h}=3-1^{2}=\xi, 31 i 1 \\
& 12^{2 \pi}=12-1^{2}=\xi_{2} \cdot 32: 1 \\
& 12^{t_{0}}=10-5^{2}=\xi \cdot 33: 21 \\
& 25^{\text {th }}=1-10^{\circ}=\varepsilon_{g}, 40: 1
\end{aligned}
$$

1 Wac. $4: 54=25$ Casleu
1 Wae. $7: 43_{1}^{49}=13$ ader
1 Wac. $9: 3$ = Fist mouth
1 Wae. $9: 54=$ Secons nouth
1 neae. $13: 51=$ Secous moult
1 Mae. 14:27 = 18 Elul.
2 Wae. 1: $9,18=$ Hhouth xo:5 Cavleu
2 mae. $\times 1: 21=24$ Nisseorus Setter of fysiars
2 wae. $x_{1}: 30=30$ Xaithieus See index σ i: $: 33,38=15 \times$ antlimus
2 Wae $X V: 36=13$ Adar
Qpaeryfha - Charles - Vab II-page 244. "Free nori reactly an the day," ebe.

See Casfrari, $p .10 \mathrm{~F}$ an Ldeler, $I, \gamma, 512$, ff Tulerealary year $=$ Sanhedrice 1.2 and Rosh hashadia $2 \cdot 9$, ano 3.1.
"In the six lmondreth year of Noalis life, in the second month, the seventeenth day of the moor, the same day were del the forme wins of the opecet deep binate ip p, "And it same to pass in the six huudredets and first yo car of the month, was the Earth dived. Aud stood apalse milt Mo ale, saying, "Go forth of the arlin, elbe. Gen. 8:13-16.

Wore tran lī̈o mielenimus offer the world was created, woos wot the aceomit of the flood as grow in Govenis 7 an 8 , Hhorinhont clue boobs of moses the months are abbayo mentioned by noubhis, while its reception of the frost anowth or the eye ar somelinies eacleve abib. In the
 and poor eger. If a evinfeli hbinlation in wade for the various periods

 duration of Che Pemelatinces, it mile be Gand to belly as follows;
dave, This simple calcuttan protein motancy meveach the length of the frumblue year as 365darp, lat If shows tret the imonetir ar for tads as The flood were the same $29-30$ day twuegith
, mouths as aliveupure
maguowate hive, for on no

From this table it wive he seen
365 dago numbed the length of ane year of Noah life, ane of it sameponded to the hive betiven I Our 17 of Noalia year 600 , \$and Iyar 27 of Nobs year 601. Moses neebranes \bar{t} his period as \$ecactly ane year for in gen. 7: he says hat hor was 600 your Fold when the fico eave, ans m gm. $9: 28,29$ he gary that vo ole the
 2 la fe od year, or first year of the 350 - year perineal TH was a 365 -day gar. That nosed counted the pride of the ford § b is be just a year in ling th mar be couchoded frown lin language 600° year, and leaving wine the 601 pt gear in the same mouth. In as much

（2）The title is of very frequent occurrence in the Roman inscriptions． （Mommsen，Instr．Regni Neap．n． $2555=$ Corp．Insc．Lat．vol．．．n． 1893 at Murano， near Naples：Th．Claudius Philippus dia vi et gerusiarches）．We have already met with it elsewhere，Vizo in Antioch，Alexandria，and Berenice．It also occurs some－ tines upon epitaphs found outside of Rome，and we may add that Tertullian classes the priest，Levite，and archon together as Jewish officials ${ }^{\prime \prime \prime}$ According to all anal－ ogy elsewhere（comp．especially Alexandria and Berenice）it may be taken for granted， in the case of the Roman communities as well，that each of them would have several who would act as the managing committee of the ．It would ap－ pear from the title which is repeatedly met with，that the archons were ap－ pointed for a definite period se and in a Homilia in S．Johannis Natalem，ascribed to Chrysostom，and which haspinin viler the state of matter＇s in Italy during the imperial times，we are expressly informed that the archon were always elected in September， the begiming of the civil year of the Jews．The following are the ipsissima verba of this interesting passage：Inter haec intuendae sunt temporum qualitates et gesta morum；et primum perfidia Judaeorum，quit in semper in Deum ot in Mosem contumaces ex－ stiterunt，qui cum a Neo secundum Mosem initium ann mensem 堆artium acceperint，ill dictum pravitatis sive superbiae exercentes mensem Septembrem，ipsum notum annam nun－ oupant，quo et mense magistratus sibi designant，ques Archontas vocant． 118 ［This home－ ily（according to Wessoling，De Judaeorum archontibus，chap．x_{0} ）is to be found in Chrystomi Opp．vol．ii．ed．Paris 1687．As I have no means of consulting this edition， I quote the passage as given by Wesseling－］Shires，Encl＂，Wiblary of the Jewish Peofole，＂Second Division，part II，p，250．Scribreis，view York．

Translation：＂Among these things the nature and business of the times and customs are to be looked into：and first of all the perfidy of the Jews，who always stood up bold by against God and Moses，who，although they received from God according to Moses the inonth of March as the beginning of the year，exercising a command of perverseness and pride，named the month of September as the new year itself，even in which month， they appointed for themselves magistrates，whom they call archons．＂

111
Yentas
(2) The title is of very frequent occurrence in the Roman inscriptions. (Mommsen, Inser. Regni Neap. n. $2555=$ Corp. Insc. Lat. vol. x. n. 1893 at Murano, near Naples: Th. Claudius Philippus dia viu et gerusiarches). We have already met with it elsewhere, viz。 in Antioch, Alexandrie, and Berenice. It also occurs sometines upon epitaphs found outside of Rome, and we may add that Tertullian classes the priest, Levite, and archon together as Jewish officialso'"According to all analogy elsewhere (comp. especially Alexandria and Berenice) it may be taken for granted, in the oase of the Roman comunities as well, that each of them would have several who would act as the managing committee of the . It would appear from the title which is repeatedly met with, that the archons were appointed for a definite periodse and in a Komilia in S. Johannis Natalem, ascribed to Chrysostom, and which has,rin Vilv the state of matter's in Italy during the imperial times, we are expressly informed that the archons were always elected in September, the beginning of the civil year of the Jews. The following are the ipsissima verba of this interesting passage: Inter haec intuendae sunt temporum qualitates et gesta morum; et primum perfidia Judaeorum, qui in semper in Deum et in Mosem contumaces exstiterunt, qui cum a Deo secundum Mosem initium anni mensem 維artium acceperint, illi dictum pravitatis sive superbiae exercentes mensem Septembrem, ipsum noypm annum nuncupant, quo et mense magistratus sibi designant, quos Archontas vocant. 18 [This homily (according to Wessoling, De Judaeorm archontibus, chap. x_{0}) is to be found in Chrystomi Opp. vol. ii. ed. Paris 1687. As I have no means of consulting this edition, I quote the passage as given by Wesseling-] Sh"irer, Enil", Wistary of the Jewioh Peofole," Second ©ivision, part II, p, 250. Scribners, vew York.

Translation: "Among these things the nature and business of the times and customs are to be looked intos and first of all the perfidy of the Jews, who always stood up boldyy against God and Moses, who, although they received from God according to Moses the month of March as the beginning of the year, exeroising a comnand of perverseness and pride, naned the month of September as the nevk year itself, even in which month, they appointed for themselves magistrates, whom they call archonse"

111
Lerta

Translation from Bench－عß－4．18．40．
Excerpt made or by：Kew York Public library

$$
\text { Differ Ave + } 42 \text { nd St. }
$$

From：Beminues of Rhodes，＂Introduction aux phénomines célestes＂，trans．年 Hoot Halma Pains， 1819.
pp．50－51．＂The moon does not show the same phases always on the same days leet rather the days change from month to month due to the irregularity of her movement．for she appears as a crescent at the earliest in the neomenia and at the latest as from the third day；she remains in this state same－ times mute the fifer day or at the most metic the seventh．She becomes dichotomous at the earliest on the sixth day + at the latest towards the eighth；she becomes gibleous （protuberant？）or biconvex double convex at the earliest on the tent？ day，and at the latest on the． thirteenth．The full moon arrives at the earlifistsed the 13 the and er at the latest

Lencinus - ph.50-57 cont.
on the 17 th of the march. She again becomes double convex at the earliest When she rises on the 18 th day, and at the latest towards the 22th. Soche she apain becomes diehotonous at the earliest towards the 21 st, and at the latest towards the 23 rd . Finally, she again appears as a crescent at the earliest on the 25 ch , and at the latest on the 26 th. So the time one month lasts is $29 \frac{1 / 2}{2} \frac{1}{3}$ days. For ane month is the time which passes as from one conjunocto, to the next, or from ane fuel moon to the next. The conjunction takes place when sun + moon meet at the same point which happen in the triacade (thirtieth day.) "
"La lune ne montre pas les mêmes phases dans tous les mêmes jours, mais dans des jours qui changent de mois en mois, par suite de l'irrégularité de son mouvement. Car elle paroit en faucille au plus tôt dans la néoménie, et au plus tard dès le trdisième jour; elle demeure dans cet état quelquefois jusqu'au cinquième, ou tout au plus jusqu'au septième. Blle devient dichotome au plus tôt le sixième jour, et au plus tard vers le huitième; elle paroit gibbeuse ou biconvexe au plus tôt le dixième jour, et au plus tard le treizième. La pleine-lune arrive au plus tôt le 13 , et au plus tard le 17 du mois. Elle redevient biconvexe au plus tôt quand elle se lève le dix-huitième jour, et au plus tard vers le vingt-deuxième. Blle redevient dichotome au plus tôt vers le 21 , et au plus tard vers le 23. Enfin elle reparoit en faucille au plus tôt le 25 , et au plus tard le 26. Or tout le temps de la durée d'un mois est de $29 \frac{1}{2} \frac{1}{3}$ jours. Car un mois est le temps qui s'écoule d'une conjonction à la suivante, ou d'une pleine-lune à la suivante. Or la conjonction se fait dans le temps où lé soleil et la lune répondent au même point, ce qui arrive dans le triacade (au trentième jour.)"

From: Geminus, of Rhodes.
Introduction aux phénomènes célestes, traduite par l'abbe Halma. [Paris, 1819.] Pages 50-51.

Liew tork Public Library Fifth Avenue and 42xd Street New York, M. Y.
"--if a ship going westward is approaching the 180 th meridian near midnight of Saturday, August 2, for example, the navigator enters the new day in his log-book as Monday, August 4, thus losing Sunday out of the week; but if the ship is going eastward, and is approaching the meridian near midnight of Sunday, August 3, for example, he enters the new day in his log-book as Sunday, August 3, thus repeating the Sunday of that week.

Thus the calendar of the traveler in making the circuit of the world is kept in agreement with the calendar of any country he may visit, including that of his own home, when he returns to it.

Greenwich noon is then, the only instant at which the date can be the same all around the world.

Strictly the navigator should make the change at the instant of crossing the maridian; but all counting of time is a convention, to suit the convenience of the people concerned; and so navigators have agreed that when on the open sea, they will make the change at the midnight nearest to the time of actual crossing. "-Flint, Albert S., "The Changing of the Date at the 180 th Meridian." Popular Astronomy, Vol. XXVII (1919), Northfield, Minnesota.
(Albert Stowell Flint (1853-1923) was an astronomer and computer at the U.S. Naval Observatory).
"Krusenstern, in his 'Voyage around the World,' says: 'On the 29th April (1806) we had made three hundred and sixty degrees of the Greenwich meridian from east to west. I therefore altered my reckoning; and as we had lost a day, called the next the lit of May. ${ }^{\prime \prime}$--links, Arthur Re, "Nautical Time and Civil Date." Geographical Journal, Vol. LXXXV1, 1935, p. 152.
"International Date Line," by Roscoe Lamont. Popular Astronomy, Vol. XX1X (1921), page 340.

Dutton, Captain Benjamin, "Navigation and Nautical Astronomy.
Because of the variance between the 180th meridian and the irregular international dateline, each day lasts for 25 hours and 12 minutes. For this reason, three different days exist at the same time. When it is $12: 01 \mathrm{~A}, \mathrm{M}_{0}$, Wednesday, at Cape Deshnef, Siberia, it is 11:17 A.M., Tuesday, at Greenwich, England, and 10:49 P.M., Monday on Attu Island at the extreme west of the Aleutian group.

[^3]MPRTDEAUX'S CORNWCMION," Oxford, at the Univorsity Press. 1DCOCLI. Vol. 1. Quoted from the 24-page Preface of Aug. 1, 2715:--wThe year I compute by in the annals is the Julian year, which begins from the Plrst of Jomuary; and to this I reduce all the aotions I treat of, though they were originally reckoned by other forms. . . The Syriens and Phoenecians begun their year from the autumal equinox, and so did also the Hebrews, till their coming up out of the land of Bgypt. But that happening in the konth of Misan, in conzemoration of this deliverance they afterwards begun their year from the beginning of that month, whieh usually happened about the time of the vernal equinoz. And this form they over after made use of in the calculating of the times of their fasts and Pestivels, and all other ecclesiasticel times and concerns. . . Ancientiy the form of the year which they made use of was wholly inarificioiel: for it was not settled by any astronomical xules or calculetions, but wes made up of lunar months set out by the phasis or appearance of the moon. When they bap the nem moon, then they began their months, which sometimes consisted of twenty-mine days, and sometimes of thirty, according as the now moon did sooner or later appear. . So that their months consister of twenty-nine days and thirity days altomately. None of them had fewer then twenty-nine daye, and therefore they never looked for the new moon before the night following the twenty-ninth day, and if they Gavi it, the next day was the first day of the following month. Neither had any of their months more than thirty days, and therefore they never looked for the new noon after the night following the thixtieth day; but then, if they (2an It not, the coneluded that the appearance was obstructed by the clouda, and made the next day the first of the following month, without expecting any longer; and of twelve of these months their coumon year ansisted. But twelve lunar months falling oleven days short of a solar year, evexy one of these common years began eleven days sooner than the fozzer; which in thirtythree years' time would carry back the begiming of the year through sill the four seasons to the same point again, and get a whole year from the solar reckoning; (as is now đone in Turkey, where this sort of year is in use;) for the remedying of which their usage was sometimes in the third year, and sometimes in the second, to cast in anothor month, and make thoir year then consist of thirteen months; whexeby they constantly roduced their lunar year, as far as such an intercalation could effect it, to that of the sun, and never sufferod the one, for any more than a month, at any time to vary from the othor. and this they were forced to do for the sake of their festivals: for their feast of the passover, (the first day of which was alvays fixed to the middle of their month $N i s a n$,) being to be celebrated by their eating of the paschal lamb, and the offering up of the wave shear, as the flrst-fruits of their barley haxvest; . The passover could not be observed, till the lambs were crowm flt to be eaten, and the barley ift to be reaped; not the Pentecost till the wheat was ripe: nor the f east of tabemacles. till the ingatherings of the vineyand and olive-yard wore over. And thereione these festivals being fixed to these set seasons of the year, the making of the intercalation above mentioned was necessary for the keeping them within a month sooner or later always to them. . . But in their intercalated years there was another month added after Adar, which they called Veadar, or the second Ader; and then their year consisted of thirteon months. . . And aiter their Adar added their Veadar, which sometimes consisted of twenty-hipe days, and sometimes of thirty, accoraing as it happened. . . . When they Bene dispersed through all nations, they were forced to make use of cycles and astronomicel celculations, for the fixing of their new moons and intercalations, and the times of their feasts, fasts, and other observences. . . These having been the forms of the Jerish year, that is, the inartificial form used by the ancients in the land of Canaan, and the artificial and astronomical form now in use among the moderns throughout all their dispersions; according to noither of them can the days of the Jeviah months be fixed to any certain days of the months in the Julian year. the Meannot, when we find the day of any Jewish month memtioned either in the seriptures or in Josephus, seduce it exactly to its time in the Julian year, or there iix it any neares, than within the compass of a month sooner or laters"

$$
\begin{aligned}
& \times 1832=\text { Sept. } 24.9-29(39=5: 56)=+168^{\circ} \text { Paeifie } \\
& 1833=\text { Get. } 13-9-28(59=5: 32)=+171^{\circ} \quad \text { Pacefre } \\
& +1834=\text { Oet. } \quad 3-17-12(99=5: 44)=-73^{\circ} \text { 2udia } \\
& 1835=\text { oct. } 22.16-47(55=5: 22)=-73^{\circ} \text { Ludia } \\
& 1836=\text { oct. } 10-15-49(39=5: 36)=-84^{\circ} \text { 2ndia } \\
& \text { great Brabiun } 6 \\
& 1837=\text { Oet. } 29-22-21(5 s=5: 15)=+36^{\circ} \\
& 1838=\text { oet. } 18-16-46(33=5: 26)=-75^{\circ} \\
& 1839=\text { oct. } 7-16-34(55=5: 40)=-75^{\circ} \\
& \begin{aligned}
& \times 1840=\text { Sept. } 25-20-47(38=5: 54) \\
& 1841=\text { Oel. } 14-18-47(35=5: 31)= \\
&-42^{\circ}
\end{aligned} \\
& \text { India } \\
& \text { India } \\
& \text { Turlacy } \\
& \text { Arabia } \\
& 1842=\text { Oet. } 4-8-44(35=5: 43)=+160^{\circ} \text { Pacyfe } \\
& 1843=\text { Oet. } 24-1-13(35=5: 21)=+50 \\
& 1844=\text { Oet. } 12-1-45(s 9=5: 33)=+58^{\circ} \\
& \text { actantía } \\
& \text { atlantis amerrer } 13
\end{aligned}
$$

$+1845=$ Oet. $1-13-19(55=5: 47)=-132$ Ansbíaliw. Gapare it $+1846=$ Sept. 20-17-54 $(59=6: 00)=-67^{\circ}$ Persia, Turlsertaue, Pursia 15 $1847=$ Oet:9-11-27 $(59=5: 37)=-158^{\circ}$ Pacefie. Lslaus 16

$$
\begin{aligned}
& +1848=\text { Sefot } 27-11-56(s 9=5: 52)=-165^{\circ} \\
& 1849=\text { Oet. } 16-7-34(s 9=5: 28)=+144^{\circ} \\
& 1850=\text { Oet. } 5-17-16(59=5: 42)=-71^{\circ} \\
& x+1851=\text { Seft. } 25-8-32(s 9=5: 54)=+161^{\circ}
\end{aligned}
$$ Pacafic 2rlauss 20

1824_{4} - Sabbath, October 2
1825 - Thursday, September 22
1826 - Wednesday, October 11
1827 - Monday, October 1
1828 - Thursday, September 18
1829 - Wednesday, Ootober 7
1830 - Monday, Soptember 27
1831 - Sabbath, September 17
1832 - Thursday, October 4
1833 - Monday, Soptember 23
1834 - Monday, October 13
1835 - Sabbath, Oetober 3
1836 - Wednesday, September 21
1837 - Monday, October 9
1838 - Sabbath, September 29
1839 - Wednesday, September 18
1840 - Trednesday, October 7
1841 - Sabbath, Soptomber 25
1842 - Wednesday, September 14
1843 - Mednesday, October 4
181/ $/ 4$ - Monday, Septembor 23
1845 - Sabbath, Ootober 11
181,6 - Wednosday, September 30
1847 - Konday, Septenber 20
1843 - Sabbath, October 7
1849 - Wednescay, September 26
1850 - Honday, Septenber 16
1851 - Monday, October 6
1852 - Thursday, Soptember 23
1853 - Wednesday, October 12
1854 - ITonday, Oetobor 2
1855 - Sabbath, Soptomber 22
1856 - Thursday, October 9
1857 - Monday, September 28
1858 - Sabbath, Septenber 18
1859 - Sabbath, Ootober 8
1860 - Wednesday, September 26
1861 - Sabbath, Soptember 14
1862 - Sabbath, Ootober 4
1863 - Thednesday, Soptember 23
1864 - Monday, October 10
1865 - Sabbath, Septomber 30
1866 - Wednesday, September 19
1867 - Hednesday,
1868 - Sabbath,
1869 - Vednesday,
1070 - Wednescay.
1871 - Konday,
Soptomber 25
1072 - Sabbath, October 12
1873 - Wednesday, October 1
1874 - Monday, September 21
1875 - Sabbath, October 9
1876 - Thursday, Soptember 28
1877 - Monday, September 17
1878 - Monday, October 7
1879 - Sabbath, Sopteaber 27
1880 - Wednesday, September 15
1881 - Yonday, October 3

1882 - Sabbath,
1883 - Thursday,
1884-Monday,
1885 - Sabbath,
1886 - Sabbath,
1887 - Viednesday,
1888 - Sabbeth,
1889 - Sabbath
1890 - Wednesday,
1891 - Monday,
1892 - Sabbath,
1893 - Wednesday,
1894- Wodnosday,
1895 - Sabbath,
1896 - Thursday,
1897 - Wednesciay,
1898 - Honday,
1899 - Thursday.
1900 - Tiednesday,
1901 - Monday,
1902 - Sabbath, Ootober 11
1903 - Thursday, Ootober 1
1904_{4} - Monday, Septenber 19
1905-Mionday, Oetober?
1906 - Sabbath, Septenber 29
1907 - Hednesday, Septenber 13
1908-1ronday, Ootober 5
1909 - Sabbath, September 25
1910 - Thursday, October 13
1911 - Monajay, October 2
1912 - Sabbath, September 21
1913 - Sabbeth, Oetober 11
1914 - Hednosday, Septembor 30
1915 - Sabbath, September 18
1916 - Sabbath, October 7
1917 - Wednesday, Septeaber 26
1918 - Honday, Sopto isor 16
1919 - Sebbath, Ootober 4
1920 - Wednesday, Septomber 22
1921 - Wednescay, October 12
1922 - Monday, Octobor 2
1923 - Thursday, September 20
1924 -
1925 - Monday, September 28
1926 - Scbbath, Soptember 18
1927 - Thursday, Ootober 6
1923 - Monday, Soptenber $2 l_{4}$
1929 - Monday, Ootober 14
1930 - Thursday, October 2
1931 - Monday,
1932 - Monday, October 10
1933 - Sabbath, Soptember 30
1934 - Trednesday, September 19
1935 - linonday, October 7
1936 - Saibbath, Septenber 28
1937 - Wodnesday, September 15
193 B $_{\text {- }}$ Redednesday, October 5
1939 - Sabbath, September 23

Mey	IIIsen	Junol	Iyyer	July	Sivan	Aug	Taumuz	Sopt.	Ab	oct	B1u1
2		1	${ }_{4}$	1	25	1	16	1	18	1	18
2	14	2	15	2	16	2	17	2	19	2	19
3	15	3	16	3	17	3	18	3	20	3	20
4	16	4	27	4	18	4	19	4	21°	4	21
5	17	5	18	5	19	5	20	5	22	5	๕2
6	18	6	19	6	20	6	21	6	23	6	23
7	19	7	20	7	21	7	22	7	24	7	$2{ }_{4}$
8	20	8	21	8	22	8	23	8	25	8	25
9	21	9	๕2	9	23	9	${ }_{4}$	9	26	9	26
10	२2	10	23	10	24	10	25	10	27	10	27
11	23	11	$2{ }_{4}$	11	25	11	26	11	28	11	28
12	${ }_{4}{ }_{4}$	12	25	12	26	12	27	12	29	12	29
13	25	13	26	13	27	23	28	13	30	13	1
$)_{4}$	26	14	27	14.	28	14	29	$1{ }_{4}$	1	14	2
15	27	15	28	15	29	15	Ab 1	15	2	15	3^{-}
16	28	16.	29	16	30	16	2	16	3	16	4
27	29	17	1	17	$1{ }^{\text {manus }}$	17	3	17	4	$17^{\prime \prime}$	5
18	30	18	2	18	2	18	4	18	5	18	6
19	2	19	3	19	3	19	5	19	6	19	7
20	2	20	4	20	4	20	6	20	7	20	8
21	3	21	5	21	5	21	7	21	8	21	, 9
22	4	22	6	2.	6	22	8	22	9	22	10
23	5	23	7	23	7	23	9	23	10	Contributed by Dr. Wood on July 27 , 1939 and presented to dormittee.	
24	6	$2{ }_{4}$	8	a_{4}	8	24	10	24	11		
25	7	25	9	25	9	25	11	25	12		
26	8	26	10	26	10	26	12	26	13		
27	9	27	11	27	11	27	13	27	14		
28	10	28	12	28	12	28	14	28	15		
29	11	29	13	29	13	29	15	29	16		
30	12	30	${ }_{4}$	30	14	30	16	30	17		
31	13			32	15	32					

The date April 13-16-51, 28 A.D. was from the
Naval Observatory, Washington, by Glomn H. Draper. The Lunations are from New Moon to New Noon. Jer. CI.

The 3 bottom lines are repeated at the top. *If this new-moon in A.D. 31 should be April 10, as Draper gives it in his list,
" The New Moons for the year 27 A.D. were reckoned back make the Passover Moon come in on Wednesday in that year.
"The New Moons for the year 27 A.D. were reckon back from the data April 13 -16-51, 28 A.D.

VARIOUS RECKONINGS OF THE PASSOVER - MOON DATES DURING THE MINISTRY OF CHRIST

D R A PER
 Naval J.C.T.
 Observatory

LUNATIONS* J.C.T.

Mar. 26-19-41 N.M.
A. D.

27
Apr. $\frac{14-18-22}{10-14-3}$ F.M.
Apr. 13-16-51 N.M. $14-18-22$
Mar. 29-22-29 F.M.
Apr. 2-21-15 N. $\mathrm{H}_{\text {. }}$ 14-18-22
Apr. $\frac{14-10-22}{17-15-37} \mathrm{~F} . \mathrm{M}_{0}$
Apr. 21-13-1 $11 \mathrm{~N} . \mathrm{N}_{0}$ $14-18-22$
Apr. 25-21-7 G.C.T.Apr $\frac{\text {. }}{6-19-19}$ F.M. 2-20.89
Apr. $\frac{25-23-27.89}{}$
29-12-L 4
Apr. $10-1 / 4-51 \mathrm{~N} \cdot \mathrm{M}$. 14-18-22

28

30
>

Mar. $27-10-43$ at Jor-Mar. $26-20-29$ F.M.
usalem C.T.
Full Moon Mar. 29-21-58 N.M. $14-18-22$
Apr. $14-13-2)_{4}$
Apr. 13-16-20 F.M.
Apr. $17-20-20 \mathrm{~N} . \mathrm{M}$.
31
Mar. $\frac{26-19-19 \mathrm{~N} \cdot \mathrm{M} .}{\frac{1 /-18-22}{10-13-41}}$ F.M.
Apr. $\frac{13-16-51}{14-18-22}$
Nar. $\frac{10}{29-22-29}$ F.M.
Apr. 3-1-39 N.M. $14-18-22$
Apr. $\overline{17-20-1}$ F.M.
Apr. 21-23-11 $\mathrm{H} . \mathrm{H}$. $14-18-22$
Apr. $\frac{14-18-22}{7-4-49}$ F.M.
Apr. $\begin{aligned} & 11-7-59 \mathrm{~N} . \mathrm{M}_{0} \\ & 1 \sum_{1}-18-22\end{aligned}$
Mar. 27-13-37 F.M.
Mar. 30-16-47 N.M. $14-18-22$
Apr. $14-11-9$ F.M.
Apr. $18-\mathbf{I}_{4}-19 \mathrm{~N} . \mathrm{M}_{\text {. }}$.
Apr. $\frac{14-18-22}{3-19-57}$ F.M.
34

METONIC CYCLE
As reakoned back from 1927 - 1934
Passover Moons J.C.T.

OODENOW Passover Moon
Dates as reckoned from 1855, New Moon

J an. 18-6-3
G.C.T.

Apr. 10-12-33

Mar. 29-21-21

Apr. 17-18-53
Apr. 17-3-30

Apr. 7-3-41
Apr. 6-21- 0

Mar. 27-12-29
Mar. 27-11-45

Apr. 14-10-1
Apr. $14-10-30$

Apr. 3-18-49
Apr. $3-16-25$

Apr. 22-16-21
Apr. 22-8-30
*Lunations were computed backward and forward from Mar. 29, 28, A.D.

All of the DATES given in these colums were obtained by entirely different methods, which are subject to discussion. But it is of importance to note how nearly they all agree.

no. 2881 page 116

- Declijse bec 26

$$
\begin{gathered}
\text { zBC. } \\
\text { Mo. } 1860 \text { page } 343 \\
\text { Cechjee } \\
\text { Gani } 9,1,13, C \\
\text { z3h } 14 \text { ? U. }
\end{gathered}
$$

april Beers Connecticut Qhuanae Fair faven asbionour, Caloulations earneclete by yale College,
april 17 (bed) Suus sets $6: 89$
18 (Hher) Sun sets $6: 38$
Unied Silole's Alvouae 1844 Barloñ

Woou sets
wher Sets $9: 48$
Sives ruany

Wuers Conneoleoul Almance Gove ane

Davide yorning. Phelom.
AC901.M5 Chwance for 1386
AY420.B7B7 Brochiville Cluravere 1844
AY 420. M7M7 Woubral Poelad al. 1844
AY 256.N5H8 Antehinis Luchroved By Baod $\begin{array}{ll}\text { aluavac } & 1844 \\ \text { wartb } x_{1} \text { I. } & 1834 \\ 1836\end{array} \quad$ Phelome.
Oeti12r "1 " $5: 19$
". "n whonsedes $5: 28$.
Publeshed ley 1882
Ben Oleds. 1889
Wmareas
aknei 17 humedes 6:49
" 18 " " ${ }^{2}$ b:50
" " moonseli 8:11

 sivivy? Kal affin. const.

ם, 隹 N.m. ph. "obsewances

UNION THEOLOGICAL SEMINARY BROADWAY AT 12OTH STREET NEW YORK

Sapt 19, 193.
Sear her. Lowsty: -

1. 57. 16^{\prime} "obseare" is parafrable, is the
 as elferteren is much conuections is Dent.
 tas for Yacest to teas forti... That means,
 outharto $\left[a r b_{3}\right.$] ate te Amaction...
There is no condensus 2 opinsom on His tect, bet th forgring reens to mee to G_{2} th more wesonable iuterpictation.

Withenest regeris and pror erikes, dom sincerels yomo, fulins it. Bewer.

The moment when three stars of the second magnitude become risible $=$ get ha-kokalfim.

In places of the same latitude the live of zet ha-kobabin varies according io their longitude. Silse any other point of tine, it havel at the rate of one degree in four minutes from nervdion along any of the parallel circles, and arrives again at the searting-foint in liventy-four hows. The assertion now arises which is to he considered the first meridian , At which paint of the eircle do the 24 hours begin e? The problem has been disensoed by 12. Inouh hr - Sori in his "Cugari" (ii. II,) and although he seems in clined to tahoe the meridian of S 'mai ar of Lerusaben as the first, the meridian 90 degrees last of Jerusalem vas aceepted as the starting-ponit 3)

$$
\begin{aligned}
& 213 \quad 51 \quad 23 \\
& \begin{array}{ccc}
206 & 27 \quad 59 \\
\hline 7 & 23 & 24
\end{array} \\
& \text { 3 } 4142 \\
& \begin{array}{l}
206 \quad 27 \quad 59 \\
21049 \quad 41 \\
199 \quad 1545 \\
10-53 \quad 54
\end{array}
\end{aligned}
$$

WISH CALENDAR BASEDON POSTULATE 1

1839 JEWISH CALENDAR BASEDON POSTULATEI Elul Oot Hes Nov Teb Jan Adar Mar Iyar May Tam July Elul Sept Hes Nov

21	2	29	29		26	18	24	17	21	16	18	15	14	14	11	13	8
22	3	21	30	20	27	19	25	18	22	17	19	16	15	15	12	14	9
23	4	22	1 D	21	28	20	26	19	23	18	20	17	16	16	13	15	10
24	5	23	2 E	22	29	21	27	20	24	19	21	18	17	17	14	16	11
25	6	24	3 C	23	30	22	28	21	25	20	22	19	18	18	15	17	12
26	7-16	25	4	24	31 F	23	29	22	26	21	23	20	19	19	16	18	13
27	8	26	5	25	1 E	24	30 A	23	27	22	24	21	20	20	17	19	14
28	9	27	6-5	26	2 B	25	31 P	24	28	23	25	22	21	21	18	20	15
29	10	28	7	27	3-16	26	1 R	25	29	24	26	23	22	22	19	21	16
T 1	11	29	8	28	4	27	2-17	26	30	25	27	24	23	23	20	22	17
12	12 K	K 1	9	29	5	28	3	27	31-9	26	28-23	25	24	24	21	23	18
S 3	13 I	12	10 S	S 1	6	29	4	28	1 J	27	29	26	25-20	25	22	24	19
R 4	14 S	3	11 H	H 2	7	N 1	15	29	2 U	28	30	27	26	26	23	25	20
I 5	15 L	4	12 E	E 3	8	I 2	86	S 1	3 N	29	31	28	27	27	24-4	26	21
6	16 E	5	13 B	B 4	9	S 3	7	12	4 E A	A'1	1 A	29	$28)$	28	25	27	22-19
7	17 U	U 6	14 A	A 5	10	A 4	8	$\checkmark 3$	B	B 2	2 UT	T 1	29 ${ }^{\text {a }}$	29	26	28	23
8	18	7	15 T	T 6	11	N 5	9	A 4	6	3	3 GI	I 2	30	30	127	29	24
9	19	8	16	7	12	6	10	N 5	7	4	4 S	S 3	10 K	K 1	28	S 1	25
10	20	9	17	8	13	7	11	-	8	5	5 R	R 4	2 C I	12	29	H 2	26
11	21	10	18	9	14	8	12	7	9	6	6 I	I 5	3 T S	5	30	E 3	27
12	22-18	11	19	10	15	9	13	8	10	7	7	6	4 L	L 4	1 D	B 4	28
13	23	12	20-15	11	16	10	14	9	11	8	8	7	5 E	E 5	2 E	A 5	29
14	24	13	21	12	17-16	11	15	10	12	9	9	8	6 U	U 6	3 C	T 6	30
15	25	14	22	13	18	12	16-22	11	13	10	10	.	8	7	4	7	31
16	26	15	23	14	19	13	17	12	14	11	11	10	-	8	5	8	1 F
17	27	16	24	15	20	14	18	13	15-5	12	12	11	9	,	6	9	2 E
18	28	17	25	16	21	15	19	14	16	13	13-9	12	10	10	7	10	3 B
19	29	18	26	17	22	16	20	15	17	14	14	13	11-9	11	8	11	4
20	30	19	27	18	23	17	21	16	18	15	15	14	12	12	9-6	12	5
21	31	20	28	19	24	18	22	17	19	16	16	15	13	13	10	13	6×4
22	1 N	21	29	20	25	19	23	18	20	17	17	16	14	14	11	14	7
23	20	22	30	21	26	20	24	19	21	18	18	17	15	15	12	15	8
24	3 V	23	31	22	27	21	25	20	22	19	19	18	16	16	13	16	9
25	4	24	1 J	23	28	22	26	21	23	20	20	19	17	17	14	17	10
26	5	25	2 A	24	29	23	27	22	24	21	21	20	18	18	15	18	11
27	6-10	26	3 N	25	1 M	24	28	23	25	22	22	21	19	19	16	19	12
28	7	27	4-23	26	2 A	25	29 M	24	26	23	23	22	20	20	17	20	13
29	8	28	5	27	3 R	26	30 A	25	27	24	24	23	21	21	18	21	14
30	9	29	6	28	4-6	27	1 Y	26	28	25	25	24	22	22	19	22	15
H 1	10	30	7	29	5	28	2-2	27	29-16	26	26	25	23	23	20	23	16
E 2	11 T	T 1	8	30	6	29	3	28	30	27	27-9	26	24	24	21	24	17
S 3	12 E	E 2	9	A 1	7	30	4	29	1 J	28	28	27	25-11	25	22	25	18
$\checkmark 4$	13 B	B 3	10	D 2	8	I 1	5	30	2 U	29	29	28	26	26	23-23	26	19
A 5	14 E	E 4	11	A 3	9	Y 2	6	T 1	3.1	30	30	29	27	27	24	27	20
N 6	15 T	I 5	12	R 4	10	A 3	7	A 2	47	1	31	30	28	28	25	28	21-13
7	16	,	13	5	11	R 4	8	M 3	5 E	E 2	1 SH	H 1	29	29	26	29	22
8	17	7	14	6	12	5	9	M 4	6	L 3	2 EE	E 2	30 T	T 1	27	30	23
9	18	8	15	7	13	6	10	05	7	U 4	3 P S	53	31 E	E 2	28		24
10	19	9	16	8	14	7	11	26	8	L 5	4 TV	V 4	1 NB	B 3	29	D 2	25
11	20	10	17	9	15	8	12	7	9		A	A 5	20 E	E 4	30	A 3	26
12	21-4	11	18	10	16	9	13	8	10	7	6 N	N 6	3 V	T 5	31		27
13	22	12	19-2	11	17	10	14	9	11	8	7		4	6	1 J		28
14	33	13	20	12	18-6	11	15	10	12	9	8	8	5	7	2 A	,	1 M
15	24	14	21	13	19	12	16-13	11	13	10	9	9	6	8			2 A
16	25	15	22	14	20	13	17	12	14-19	11	10	10	7	9	4	8	
17	26	16	23	15	21	14	18	13	15	12	11	11	8	10		9	4
18	27	17	24	16	22	15	19	14	16	13	12	12	9-20	11	6	10	5
19	28	18	25	17	23	16	20	15	17	14	13	13	10	12	7-17		6

JEWISH CALENDAR BASEDON POSTULATEI

1841
A

JEWISH CALENDAR BASEDON POSTULATEI $\frac{\text { Ab Aug }}{3}$ Tis Oot Hes Dec Teb Feb Adar Mar 9 Iyar May Tam July Elul Sept Hes Nov

Full Moons--Blue New Moons--Red

"He signifieavee of the crescent being shown as lying on its back is seen at once when it is remembered that the new noon is differently inclined to the horizon according to the tine of year when it is seer. At' is most nearly upright ab the live of the anhinm equinox ; it is moot nearly harigontal, "lying ans it backs," at the spring equircot. It is clear from This symbol, therefore, that the Babylonians began This year in the spring." Page 316:

The method employed in very early hines in Aseyira and Babylonia for determining the first wo nth of the year was a simple and effective one, The paiviple of wheel may be explained thus: If we watch for the appearance of the new noon in e sporing tine, and, as we see it setting in the west, notice sone bright star near it, then 12 mouths later erence, that the moon and sear rival be seen together, not an the first, but on the second evening of the mouth. For since 12 hoar months fall short of a solar year by 11 days, the move an the first evening named be about II degrees shoot of her former farsition. Nut as she moves about 18 degrees in 24 hours, the next evening she wowed he faracticalely back in her old face. In the seoul fear,
 second evening of the first months; and iv lille manner they waned set together on the Third evening in the third year; and, roughly speaking, an the fourth evening of te forth year. But this last conjunction would wean that they would also set begetter on the first evening of the nest monte, which would thus be indicated as the vire first month of the gear. Thus when no an and star set Logether an the Third evening of a month, This Len month later they waned set together on the first evening of a mouth. Thus the setting together of moon and star wowed not only mark which nus ti be the first monte of the year. but of they set together an the first evening, it wowed show that the year then beginning vas is be an ordinary one of 12 months; if on the third evening, that the sigherbornerntertent bovedeec a fuel one of 13 (over)

DATES ON WHICH PASCHAL FULL NOONS OCCUR, by Lieut.-General Sir Charles Warren,
K.C.B., F.R.S. Quarterly Statement Pales. Ex. Fund, April, 1900. P. 158.

The Gregorian calendar coincides with the Julian calendar during the period 200 A.D. to $300 \mathrm{~A} . \mathrm{D}$. That is to say, 10 da ys were taken off for the years A.D. 1100 , $1000,900,700,600,500,300$, so that in adjusting the dates of the first century found in the Gregorian style to the Julian style, "two days must be subtracted for the years 200 and 100 A.D.

THE DATE OF THE CRUCIFIXION, by James Simpson, Esq. Q.S. Pal. Ex. Fund, Jan., 1907, page 52.
Caspari shows that it is quite unsafe to be guided by the Calendar of the modern Jews introduced by the Sanhedrim of Tiberias about A.D. 200, as it in many respects dif $40 .$. fers from that desoribed in tradition; for according to tradition the 15 th of Nisan, and consequently also the lst, could fall on any day of the week. Cf. Chron. and Geog. Introduction to the Life of Christ (1868) by Ch. Ed. Caspari.

He also gives from Eusebius a quotation from Anatolius of Laodicea (3 r d century) which cites from an ancient Jewish commentary written in the time of Ptolemy Philadelphus the rule that at the Paschal festival the sun as well as the moon must necessarily have passed the equinoctial point. It would therefore be interesting to know the exact hour, as well as day, of the Vernal Equinox, not only in the year 34, but in every other year which could possibly have been that of the Passion.

BABYLONIAN ASTRONOMY--HISTORICAL SKETCH, by A.T. OImstead, in The American Journal of Semitic Languages and Literatures. April, 1938.
Despite constant assertions to the contrary, astronomy was not a science at a fabulously early time; its beginnings as a soience date back only to the late Assyrian period, its best-known devotees lived under the Achaemenid Persians, its greatest triumphs were under Seleucid or even Parthian rule.. Scientific astronomy was primarily developed from practical considerations and, in particular, from the need of adjusting the oalendar. . At a very early date the Egyptians had expanded a year of twelve months, 360 days, by five "additional days" not reokoned to any month, and thus produced a year of 365 days, very close to the true length of the year. But having made this great discovery, their innate conservatism prohibited further change, and thus, because of the nearly one-quarter day left out of the reckoning, the aalendar slipped back approximately one day every four years until in 1460 years New Year's Day had made its appearance in every day of the solar year and was back again at its begiming. (Cf. J.H.Breasted, "The Beginnings of Time Measurement and the Origins of our Calendar," Scientific Monthly, LXI (1935), 289 ff.)

Nearly accurate as this Egyptian calendar was, the results did not appeal to the more practical Babylonians, who had no desire to see their seasons shifting through all the months. Their own solution of the problem was far less "scientific" and immensely more complicated, but it did bring the months approximately to their proper seasons; and the very complexity demanded a more highly developed skill which was directly responsible for the impressive discoveries of Babylonian astronomy. If the Egyptian calendar was the direct ancestor of our own, the Bebylonian calendar brought about soientifis astronomy.

The Babylonians operated with a year of twelve months, about 354 days. When it was discovered that a given month, say the "month in which cattle prospered," was some 30 days off from the seasonal calendar, a thirteenth month was added at the end of the year, which was then approximately 384 days in length. Henceforth, this system of intercalation was followed not only in Babylonia but in surrounding countries; it was the basis of the Hebrew calendar, as well as that of the Greeks and Romans before the reform of Caesar, and it still determines our church feasts.

Refinement of this system quickly followed, and by the third dynasty of Ur (22902183) there were rough oycles by which the intercalated month was inserted at a definite year in the oycle. So far as we can make out, the cycle was of eight years--a cycle too long followed by the Greeks.

Jerusalem C.T. MOSAIC CALEN DAR -- 1838-39. CYCLE YEAR 7-- 383 days. Page 7 1939

1838 Nis	April	Siv	June	Ab	Aug	Tis	Oot	Kis	Dec	She	Jan	
13	10-4-27	13	8-7-11	13	6-0-16				2	14	30	FULL MOONS
	${ }^{11}$	14	${ }^{9}$	14	7	14	5	14	3	15	31	
15	12	15	10	15	8	15	6	15	4	16	1 F	
16	13	16	11	16	9	16	7	16	5	17	2 E	
17	14	17	12	17	10	17	8	17	6	18	3 B	
18	15	18	13	18	11	18	9	18	7	19	4 R	
19	16	19	14	19	12	19	10	19	8	20	5 U	
20	17	20	15	20	13	20	11	20	9	21	6 A	
21	18	21	16	21	14	21	12	21	10	22	7 R	
22	19	22	17	22	15	22	13	22	11	23	8 Y	
23	20	23	18	23	16	23	14	23	12	24	9	
24	21	24	19	24	17	24	15	24	13	25	10	
25	22	25	20	25	18	25	16	25	14	26	11	
26	23	26	21	26	19	26	17	26	15	27	12	
27	24-9-21	27	22-4-54	27	20-6-47	27	18-16-46	27	16	28	13	
28	25	28	23	28	21	28	19	28	17-2-43	29	14-5-49	NEW MOONS
29	26	29	24	29	22	29	20	29	18 5:00	30	15 5:47	
30	27 6:35	30	25 7:07	30	23 6:35	30	21 5:23	T 1	19	A 1	16	
I 1	28	T 1	$26{ }^{\text {c }}$	1	24	H 1	22	E 2	20	D 2	17	
Y 2	29	A 2	27 I	2	25	E 2	23	B 3	21	A 3	18	
A 3	30	M 3	28 U	3	26	S 3	24	E 4	22	R 4	19	
R 4	1 M	M 4	29 L	4	27	V 4	25	T 5	23	5	20	
5	2 A	U 5	30	5	28	A 5	26	6	24	6	21	
6	3 Y	26	1 J	6	29	N 6	27	7	25	7	22	
7	4	7	2 U	7	30	7	28	8	26	8	23	
8	5	8	3 L	8	31 S	8	29	9	27	9	24	
9	6	9	4 Y	9	1 E	9	30	10	28	10	25	
10	7	10	5	10	2 P	10	31	11	29	11	26	
11	8	11	6	11	3 T	11	1	12	30	12	27	
12	9-19-18	12	7-16-39	12	4-8-38	12	2-2-46	13	31-2-56	13	28-10-56	FULL MOONS
13	10	13	8	13	5	13	3 N	14	1 J	14	1 M	
14	11	14	9	14	6	14	40	15	2 A	15	2 A	
15	12	15	10	15	7	15	5 V	16	3 N	16	3 R	
16	13	16	11	16	8	16	6 E	17	4 U	17	4 C	
17	14	17	12	17	9	17	7 M	18	5 A	18	5 H	
18	15	18	13	18	10	18	8 B	19	6 R	19	6	
19	16	19	14	19	11	19	9 E	20	7 Y	20	7	
20	17	20	15	20	12	20	10 R	21	8	21	8	
21	18	21	16 -	21	13	21	11	22	9	22	9	
22	19	22	17	22	14	22	12	23	10	23	10	
23	20	23	18	23	15	23	13	24	11	24	11	
24	21	24	19.	24	16	24	14	25	12	25	12	
25	22	25	20	25	17	25	15	26	13	26	13	
26	23-18-44	26	21-16-43	26	18-23-5	26	16	27	14	27	14	
27	24	27	22	27	19	27	17-10-23	28	15-17-14	28	15-16-33	NEW MOONS
28	25	28	$23 \quad 2$	28	20	28	18	29	$165: 21$	29	16	
29	26 6:54	29	24 7:01	29	21 5:59	29	19 6:02	S 1	17	30	17 6:09	
S 1	27	A 1	25 T	1	22	K 1	20	H 2	18	$\checkmark 1$	18	
12	28	B 2	26 I	2	23	I 2	21	E 3	19	E 2	19	
V 3	29	3	27 S	3	24	S 3	22	B 4	20	A 8	20	
A 4	30	4	28 R	4	25	L 4	23	A 5	21	D 4	21	
N 5	31	5	29 I	5	26	E 5	24	T 6	22	A 5	22	
6	1 J	6	30	6	27	U 6	25	7	23	6	23	
7	20	7	31	7	28	7	26	8	24	7	24	
8	3 N	8	1 A	8	29	8	27	9	25	8	25	
9	4 E	9	2 U	9	30	9	28	10	26	9	26	
10	5	10	$3 \mathrm{G} \quad 1$	10	10	10	29	11	27	10	27	
11	6	11	41	11	2 C	11	30	12	28	11	28	
12	117	12	$5 \quad 1$	12	3-17-7	12	$2-13-55$	13	29-18-1	12	29	FULL MOONS

Jerusalem C.T. M SiAI C CALENDAR - 1839-40. CYCLE YEAR 8 -- 354 days.
Page 8

		Iyar	May	Tam	July	Elul	Sept H	Hes		Teb	Jan	
13	$30-4-39^{\circ}$	13	128-13-6	13	26-13-46	13 II	23-9-30	13	121-4-34		19-2-54	FULL MOONS
14	31	14	29	14	27	14	24	14	22	14	20	
15	1 A	15	30	15	28	15	25	15	23	15	21	
16	2 P	16	31	16	29	16	26	16	24	16	22	
17	3 R	17	1 J	17	30	17	27	17	25	17	23	
18	4 I	18	2 U	18	31	18	28	18	26	18	24	
19	5 L	19	3 N	19	1 A	19	29	19	27	19	25	
20	6	20	4 E	20	2 U	20	30	20	28	20	26	
21	7	21	5	21	3 G	21	10	21	29	21	27	
22	8	22	6	22	4 U	22	2 C	22	30	22	28	
23	9	23	7	23	5 S	23	3 T	23	1 D	23	29	
24	10	24	8	24	6 T	24	40	24	2 E	24	30	
25	11	25	9	25	7	25	5 B	25	3 C	25	31	
26	12	26	10	26	8	26	6	26	4 E	26	1 F	
27	13	27	11-17-3	27	9-11-39	27	7-16-34	27	5 M	27	2 E	
28	14-1-38	28	12	28	10	28	8	28	6-4-21	28	3-16-19	NEW MOONS
29	15 6:27	29	13 7:03	29	11 6:48	29	9 5:37	29	7 5:00	29	45:38	
N 1	16	S 1	14	A 1	12	T 1	10 K	K 1	8	S 1	5 U	
12	17	I 2	15	B 21	13	I 2	11 I	12	9	H 2	6 A	
S 3	18	V 3	16	3	14	S 3	12 S	S 3	10	E 3	7 R	
A 4	19	A 4	17	4	15	R 4	13 I	L 4	11	B 4	8 Y	
N 5	20	N 5	18	5	16	I 5	14 E	E 5	12	A 5	9	
6	21	6	19	6	17	6	15	U 6	13	T 6	10	
7	22	7	20	7	18	7	16	7	14	7	11	
8	23	8	21	8	19	8	17	8	15	8	12	
9	24	9	22	9	20	9	18	9	16	9	13	
10	25	10	23	10	21	10	19	10	17	10	14	
11	26	11	24	11.	22	11.	20	11	18	11	15	
12	27 121	12	25	12	23	12	21	12	19	12	16	
13	28-21-45	13	26	13	24-23-58	13	22-18-52	13	20-14-25	13	17-16-14	FULL MOONS
14	29	14	27-2-21	14	25	14	23	14	21	14	18	
15	30	15	28	15	26	15	24	15	22	15	19	
16	1 M	16	29	16	27	16	25	16	23	16	20	
17	2 A	17	30	17.	28	17	26	17	24	17	21	
18	3 Y	18	1 J	18.	29	18.	27	18	25	18	22	
19	4	19	2 U	19.	30	19	28	19	26	19	23	
20	5	20	3 L	20	31	20	29	20	27	20	24	
21	6	21	4 Y	21	1 s	21	30	21	28	21	25	
22	7	22	5	22.	2 E	22	31	22	29	22	26	
23	8	23	6	23	3 P	23	1 N	23	30	23	27	
24	9	24	7	24	4 T	24	20	24	31	24	28	
25	10	25	8	25	5 E	25	3 V	25	1 J	25	29	
26	11	26	9	26	6 M	26	4 E	26	2 A	26	1 M	
27	12	27	10	27	7	27	5 M	27	3 N	27	2 A	
28	13-9-31	28	11-1-22	28	8-0-42	28	$6-10-32$	228	4-23-41	128	3 R	
29	14	29	12	29	9	29	7	29	5	29	4-6-26	NEW MOONS
30	15 6:48	30	13 7:05	30	10 6:13	30	8 5:07	30	6 5:12	30	5	
11	16	T 1	14	E 1	11	H 1	$9{ }^{\text {P }}$	T 1	7	A 1	6	
Y 2	17	A 2	15	L 2	12	E 2	10 E	E 2	8	D 2	7	
A 3	18	M 3	16	U 3	13	S 3	11 B	B 3	9	A 3	8	
R 4	19	M 4	17	L 4	14	$\checkmark 4$	12 E	E 4	10	R 4	9	
5	20	U 5	18	5	15	A 5	13 T	T 5	11	5	10	
6	21	26	19	6	16	N 6	14	6	12	6	11	
7	22	7	20	7	17	7	15	7	13	7	12	
8	23	8	21	8	18	8	16	8	14	8	13	
9	24	9	22	9	19	9	17	9	15	9	14	
10	25	10	23	10	20	10	18	10	16	10	15	
11	26	11	24	11	21	11	19	11	17	11	16	
12	27	12	25	12	122	12	20	12	18	12	17	

Jerusalem C．T．MO S A I C C A LEN D A R－－1840－41．CYCLE YEAR 9 －－ 384 days．Page 9

1840 | Adar | Mar |
| :--- | :--- |
| 13 | $18-6-52$ |
| 14 | 19 |
| 15 | 20 |
| 16 | 21 |
| 17 | 22 |
| 18 | 23 |
| 19 | 24 |
| 20 | 25 |
| 21 | 26 |
| 22 | 27 |
| 23 | 28 |
| 24 | 29 |
| 25 | 30 |
| 26 | 31 |
| 27 | 1 |
| 28 | $2-17-41$ |
| 29 | 3 | N

I
I
A
A
N

N 1	4 A
12	5 P
S 3	6 R
A 4	7 I
N 5	8 L
6	9
7	10
8	11
，	12
10	13
11	14
12	15
13	16－22－16
14	17
15	18
16	19
17	20
18	21
19	22
20	23
21	24
22	25
23	26
24	27
25	28
26	29
27	30
28	1
29	2－2－26
30	3 6：39

30	3 6：39	30	$17: 07$
11	4 M	T 1	2 J
Y 2	5 A	A 2	3 U
A 3	6 Y	M 3	4 L
R 4	7	M 4	5 Y
5	8	U 5	6
6	9	26	7
7	10	7	8
8	11	8	9
9	12	9	10
10	13	10	11
11	14	11	12
12	15	12	13

13	$16-13-51$						
14	17						
15	18						
16	19						
17	20						
18	21						
19	22						
20	23						
21	24						
22	25						
23	26						
24	27						
25	28						
26	29						
27	30						
28	$31-9-35$						
	1		S	1	2	J	A
:---	:---	:---	:---	:---			
I	2	3	U	B			

1841

Elul Sept Hes Nov Teb Jan | 13 | $11-22-8$ | |
| :--- | :--- | :--- |
| 14 | 12 | |
| 15 | 13 | |
| 16 | 14 | |
| 17 | 15 | |
| 18 | 16 | |
| 19 | 17 | |
| 20 | 18 | |
| 21 | 19 | |
| 22 | 20 | |
| 23 | 21 | |
| 24 | 22 | |
| 25 | 23 | |
| 26 | 24 | |
| 27 | $25-20-47$ | |
| 28 | 26 | |
| 29 | 27 | $5: 52$ | $\frac{13}{14} \left\lvert\, \frac{9-20-12}{10}\right.$ 15

1
1
1
1
2
2
2
2
2
2
2
2 K
I
S
L
E

U | 1 | 26 | |
| :--- | :--- | :--- |
| 2 | 27 | |
| 3 | 28 | |
| 4 | 29 | |
| 5 | 30 | |
| 6 | 1 | D |
| 7 | 2 E | |
| 8 | 3 | C |
| 9 | 4 E | |
| 10 | 5 M | |
| 11 | 6 | B |
| 12 | 7 E | |
| 13 | 8 | R |
| 14 | $9-5-37$ | |
| 15 | 10 | |
| 16 | 11 | |
| 17 | 12 | |
| 18 | 13 | |
| 19 | 14 | |
| 20 | 15 | |
| 21 | 16 | |
| 22 | 17 | |
| 23 | 18 | |
| 24 | 19 | |
| 25 | 20 | |
| 26 | 21 | |
| 27 | 22 | |
| 28 | $23-23-45$ | |
| 29 | 24 | |
| 30 | 25 | $5: 04$ | いNがに ～～M म i 28 $\begin{array}{r}30 \\ 6 \\ \hline\end{array}$

1
2
3
4

4 | 0 |
| :--- |
| C |

| 13 | $7-17-19$ |
| :--- | :--- | :--- |
| 14 | 8 |
| 15 | 9 |
| 16 | 10 |

ULL MOON | Tam July |
| :--- |
| 13 期 $14-19-51$ | 14

15
16
17
18
19
20
21
22
23
24
25
2
27

A	1	31		T
B	2	1	A	I
	3	2	U	S
	4	3	G	R
	5	4	U	I

14	6－4－25	FULL MOONS
15	7 R	
16	8 Y	
17	9	
18	10	
19	11	
20	12	
21	13	
22	14	
23	15	
24	16	
25	17	
26	18	
27	19	
28	20	
29	21－13－41	NEW MOONS
	$225: 52$	

Jerusalem C.T. MOSAI C CALENDAR-- 1841-42. CYCLE YEAR $10-355$ days. Page 10

ag. 15 Nus. 16 Vane 17 $\begin{array}{llll}\text { may } 29 & 178 & \text { Iyar } 29 \\ \text { Lure } 30 & 172 & \text { Suomi 30? }\end{array}$ Lily 3: 172 Sum n 30 Seq a 11 Sepal. so
17^{2}
oct 22
not. 36
Lee. 31
Jan 31
Fib 29
near 31
apr
May
$2 \quad$ Elul 29

- Neaocar 30 Kislev 29 Tebet 29
Shebat 30
avar 30 under 29 Nisus is

Checking Tishri 1, 1844, Around the World
(Solar and Lunar Date Lines)

The Simar way slater' of Leruralern: the Solar Dey s slatitie 1 go the warison

FROM NISAN TO TISRI I 844

霜綦Prescent

FIRST Q Full Moon
New Moon in Apogee
5
OBSERVATION OF MOON THE DETERMINING FACTOR FIRST Q - cryecant

$\sqrt{11} \cdot \sqrt{12} / 13 / 2 \sqrt{3} / 4 \quad \sqrt{5} \sqrt{6} \sqrt{7} / 8 \quad \sqrt{9} \sqrt{10} / 11 \sqrt{12} \sqrt{13} \sqrt{14}$ DAYS
The conrse of the hoon from Conjunction io Opposilion runs in a cycle-seven times fart, or in feriods less. Than mean time, and sever Aimes slow in periods moser hew woor to Fnle neoon.

End of Passover ou May $3=$

the Earliest, and consequenty The most inforlant, evideuce in fawour of the lumar month is fannd in a fragment from the Canon Paschatis of the learned Quatobins, bishigs of faoduca in the thind centirry, whieh is houbid doun to us ly Ensebius. Anatolins cilē a commentary an the Pentatench altributed to the rĩo Agathobuli, diseifobes of Aristabnlos contènparary viete. PDleny phieadelphus, "Aristobulos," $I T$ is There said, "maintained that at the farahal fistival the smen as' well as the noom nust nueessainly have passed the equivvetial point 'That the day of the paschal festional began "A on the faurleenth of Nisar, aflei the evenhg, when The woar slañds deametrieally ofprored ω^{\prime} the sum, as any are ean see at the time of the frel wook' 'I She' sun theu stures in the sign of the vernal equinot. Caspari, po 8 Ecre. Aist, v 11.3

Chonologieal and Geograpliveal
Inbodnction
o the

Sife of chivist by
Cl. Ed. Caspari

Translaled hy Wawivec Evais, B, Q_{1}
Evinburgh, $T \& T$ Clark, 38 George So, 1876.

Qu Anan's reform
I. Triglandii, Nolitia Karacorum Hamburq, 17,4 p,46,
Lwo Bequurugs.

- Lazarus Revorid

Name. \qquad Addaress \qquad
Studr \qquad Lesson No. \qquad Date \qquad DIRECTIONS.- (a) Keep out of margin. (b) Write on both sides. (c) Number pages. (d) Leave blank line between
answers. (e) Make your writing legible, and be careful as to spelling and grammar. (f) Iise printed sheets for first page only.
Some alebraled Paschon $14^{\text {th }}$ Hesace, sonce on wect Sordiday afler 14^{M}. ' 10e
These coulenteow armne with Uelor 106 Paschog he lww - Pasch of che tuws 10 g Heresing of the $14^{\text {th }}$ doy 10 b Clirists maluety frowe $29^{\text {th }} \mathrm{g}$ Q Qhume 106 In hueg Cliriat new nuan wasauledalney Denysion eprole by day and a hayf. 107
10 limes ne Doynensuan eycele Pasele reurs mor 109
Ans hat mbrealaloug moon happoes as
it the dun 107
of the 2um 107
Jurrh epplogues - nont Elegaut 108
Inchis lable we deave not held to the pelm of detaynuy to the therdday - 10 g
but andy poyrealand huar ne
Ekeess of 18 hows.
Boele Jerres aud Arorysus clomed to hult new moous fram "amo фa' $\sigma \in \omega s \phi$ exlaciou" 108
Wüatadnct that fewrah new noows are ankeefoles by Nonysuaw 188
For thet abor... is flater on Wharch 13 from phoms, Nut Chalder Cabeubres Exleurs it thu ts nught rolve follows drey 14. But y, ele. 108

If ilooe anerents has ben wellney it ham froin che guvs, the new reaous wauld not have preceded rhe anceut Poochs by a whole frur day. 108
Very lewpleand hive of mean sygygus of the neaou holds to lhe fryyerós areadeh 108 Plowg the darp whelervele 108 Nearest awiololent Niaaw 108 Tune Ecoduo 153
Weoses year bican apree 15 T 168 Is eocle Lebrifer Niey ascrebe, ab, $/ 68$ Why jews ofject to deoel g Plunt 265 ,

But it is foned the folm is acquainted with the Save number of fonrreyp os Jernsaleur as Sulve. An this acconet we deen aurreles justified in the hiference, thot. the narratives in Sulse are fivenl in the arder of their' aecurrence; while ine the aroe acequnt the warisus foumey lo fernsalem are not duly disting viohed the oue from té other, and is the recond wisit is actached the fotal infort whíh praperly belougs reclusively iv the last. Page XXVI
the gevirin by Festivals
by selimans.
eineimato- Union of Anericare Hebrew Congregalions. 1938 ,
Qelīally, the Sauaritans of lōday are a surace aind poor renmant of an obd and great gemish seof that affreared in Palcstive about the beghumg of the Guels period. Then form the oldest Jervisl seceb in Exslentee... Lhe 8 amanitans ande the Jews bueame beood-enemies, who halied and deapised Each octier, just as in lalè' years The Karaclés and The Rabbinie pios haled Each other. Pagelel ff . There (velowicu) descriphion of Sancarilin Passaver abservicory or 14 th Minu - bee might feast.

Beach fios - the Falashas of Aby sinia sacefice on che $14^{\text {th }}$ Nisace.
"He know Chat the ganiaritons and tie Itaraites always msed vese nalerials in tiat way., (note the eoufharisow) Page 204

Hongliont ale ferviols hiolory the griet lead ir elendar develofment ahoys vui, the objictive ts assure wibld of the fews by cele. brating their fistwals an the sone dey. (20) Inregard o inlercalation the Sunhedrin didenot colent itrelf is obrewe the glate of the vurley, lent added to it the caloulatione of Equinot, called ilie Telapple, (21) Jhis ant thy sarrounded in mystery, - almays mite tre grealest mepplery (29)

As a motter of fool, in the year 3 B $a_{1} D_{1}$, the the modech gemish ealensor comes on in the madern fowish ealendar comes an Thurday, Har, 19-13 $-5^{\text {m }}$ or $5 d-19 \mathrm{~h}-95 \mathrm{se}$. Frisky, April 3, the suffoored day of Christi death beeones the 14 Misau of The Pharivees, in aecordance witte the lect of St,) hw, while it hhold have ben 15 Nisow for thise who do not accept the nules for the portfoning (as Passoover not कo eque on Weousay, Wypluesday of Fridiy) ((30)
Fridar, aprile 3 in $a, 1,33$ was nisau 14 , but he dous sis on the hyporhesis that the day of F wle hoin and Parovier evinceide (31) lite admits that sowetives Passah is elebratet (24 howrs afler Frel Woon! 2 voles Plico, Gosepalus, and all i-s波.
(he means Wisan Moled)
Hereypre the doy of 1 st Mison vile
frecede the one of 1 st T ishri, byay 2 dayp becanse 177 dayp $=25$ weehs and 2 dap

Covins $-55=$ Deferenses ape Alurek low
Persacition of Gows under Commodens and vietor. Sealges, p 105
Panvever of Resurrection $=$ Europacaus
Passover of Enuefucion $=14$ th day abservers $\frac{\text { id }}{}+$
Csians and others used furre gear of gevos
Ennofreans bugan thair year ot the
Equinot and celebsated Passover fint fhel moon aflè equinor Scaliger, 106 .
Breanse the firtival seasan in 1582 hal
Churel nivalud to eree hensel firoun conbioversy which, had arisbed aver the woon quectiou

Suvee werer by that paselvel eele is thu Cucholie churele the lue woy, but ahvars has of erved Bिun awd Nowon, liat is, eimepulatiou.

Supplencent puraog for 0 ol. 13
163 dayp from esid of P assower is inilial suunet of Twohri 1

Thefgewis did not neeognize the fahasis, whify who marloed by a narrow eresecut sealiger.
a Selmarz has showen fom the Nishua a that obe interval eouled be at least 18 hours.
Dery irreqular couchesious falew the quertion of rusebilily. Sserharde, p | 9 ,
a givehtating wheñe of 1 \& -36 houre Enlis an wnecerläin quanlity ints our forobleue. Serhartor, $p / 9$,
Fohlurnghan was folboved by Manuder, Selvel and Rengebaner. .d.
The lasks to reconobuct the gewrse calimin hus 4 mevelair quanlelies-

1. nelañoedgieal condelcous
2. A posifiones sanclyfraton
3. Fevelinating interval fenner new whon to new leighit
4. Sheorationely worked oult hivght awe destoree of
[Gerharde hos given valuable ane in paseant leatinany frone Selorele and neugebaver as io the height of the reoon when first secu. But if the gews loabod for an obder woor, as lestifiid by Realigor and itevelius, ther ale these lokes rualany out the G\&A]

Ce new novar in the begminny of hearal can only sibbindure Adar or Veador.
 ud-17.

Vens paous of jirst eenbiriy = Anzel. Lerr-1 8 . Calendar comicie was malaing usi of of servation and ealoulation allernatily. 2uotés Veainonides. ser.-18.
Phasis aflis 24 hours and less. Qer, $-18,19$.
Gingel's Table of folvases $=2$ to 3 days Her.-21
Friday of erverfacion must-fale or 15 หisan. Her. 80 ,

Mommert, Care, Ar, thiol- in
"Jur Chonologic des hebens Jecu" (heipzis, 1909), pp 138, 139
々ays:

- As father of the tewching doctrin... that Chistis Jesus nuinistry lasted about 3 yro is cansidered ... bich of Eusebins of, Cacsarea hors obont 260). In his 'Demonstratio Evangig $\left(\frac{111}{1}, 2\right)$ he finds, the deeration है of Chinst's public nixistry in the first half of the loest year hueck of Danice "in accordance with the gosful of Johe" "The whole time of preachinf " miracle performine $3 \frac{11 / 2}{}$ vears which is is given as $\frac{31 / 2 \text { years, which epwals one }}{\text { hall (year meet." } 138 \times 139}$

Ihin statement of Josephers: thergore, is moud revealing, it
 hove wh be suchi a nule for the pansower, for his day his deryo the purpeng his day

If woser, Therefore, hod afpomed the pissover $I T$ be in the avcint constiel atron of Cries, w the hueg eliriat, he feant roved have aecurre iu pisees.
Qu the olhen haw, Honefhus 1Hithey nyerres to the' zodiacal
 moneh liss cm wis solitennent he ehargs bach to mases, for

Whdnight Cry, Apprie 25,1844 .
The new noow in apail bincy passed, we are conse quentty be
yond 1843 not anly dertile youd 1843 not anly. Jentile but Jiniah, envil and Eselesiaotical
Geminns, a Qrecian asbionower, sayo, 'That when the moon is we prerigee and her noblion quialsert, ahe does nist day nosly apfear until the secone day, nos in appogee when slowest mstil the fouten, "

Hales, Uilliauc, Vol. 1, p. 67 . Sapeor,

Mommert, Care, in "Jor Cleronologie des hebens Josu"",heipigip, 1909 o ayr on p.142:
"Bebleer in "Jor Clenonlogic des Leleens Jesu" (Mïnsteri.W. 1898) pp. 88 et sequa summarizes the result of his studies regarding the date of Clint's lir th as follows:
. is to the date of birth (sec 25) it has just as little claimitostalie tradition as the one just discussed. Dec. 25 first came up in the occident, and that only about the middle of the th cent. hut spread quiclely over the territory of the Latin church, and Reginining with 376 also in the orient. Earlier, in the Ind cent,, the birth of Christ mostly was placed in the spring. Forlhe oldest we have to thank clemens lex and tippolyt.

Lo that with respect to the fixed stars, the sum and equaioctal point foll backs (as It were) 30 degrees in 2160 Gears, hohich will mate the stars appear to have gone 30 degrees forward with respects to the signs of the ecliptic in that time, for the same signs of ways heep in the sammie point of the eviptie, without regard to the constellations.

Fenguran 1186.
So that with regard to the fiend sears, the equinoctial paints in the heavens have cos coed $2^{\circ} 20^{\circ} 2^{\prime} 30^{\prime \prime}$ since creation, which is as mush as the sum moves in $81^{2}+$. Fergnoon, 189 Frow the shifting of the equinoctial paints, and with them are the sighs of the selifitic, U- follows that chore stars, which in e the the fancy of astāononvy were in' Cries, are nous in taurus, those of taverns in Gemini, the. 189.
"One haef of the no oni arbit is above the Ealipce, Lud the ather baef helow'it."
heasm noves in arbit nearly ferguran: 31 , crenear, Iere noon nurat therefore be aeked woon by tivo puaners or foreer ; ane of whish moved eance hir lo nove in a riofit 'line, arovetiar bending heer comere wits a eure. Fín. fo 5:3,

Vseaean Comnoil. Fergmoin; 8,80
raetrean the shird anares aisd chang ther the sur shiteo. sh siribll in the foremoon subiku The Run dindeo. Fergearne $2 \sim$?

Sometines the moon stonds, as it were, uforight ou wer lowir harns. She in then at'the higheet forint of the relpatie above the hariggan at that Eima, and is 90° from both sides of the hosigar where it is tren ent by the selificie. Torgusors, $p 22$.

Leve ivelursatron of that part of the celiptie to the honigon in which the uroru io at any time when nornd, may be known ty the ysanithou of har herwo i for a riglteline lärching treir faciot is frerpensiculd Wthe celiftio.

Fenguave, $p=28$.

$$
\begin{aligned}
& \text { Selcrent } I=\text { Sevir to slar }=277^{2} 8^{\mathrm{L}} \\
& \text { Simalive }=\text { Ortictuce heh }=27^{2}+ \\
& \text { p. } 229
\end{aligned}
$$

But because the Earth gaus formaid in is, is orbit, while the moon goes homide the aandie in her arbit,' the moons nunt go as much neve tham round her ortit from elrange ho ehange in compoleting a solor dy is the aertur has gove formord in iff arbit at ote f fine.

Wearliation of hour and monete land. Fengntw, pqzq.
woonis neab frath in the heaveus in wery different from her vixibti phel around the sauth: the later be in a forogrevsive civele, and the former in a eunu wath diffinint degrees of concavily. Fangurore, 231,

The moois abswhale notion is slown thease the aaritis foom her Vrird quattis is hir first; and zuiges thas the earthi' form her first quareer wher bergunou, is5
trisid

Hee maons frath bingy conceve to the sme thourghone, demonobivies that her graint Lowords the gme at he eonjumetiow, seceds her graxity Loward the esutt,

608 the nero moon is the festival of the find day of the mouth, often eaincising with the nett day after the phyemel appearance of the new moon. 612 therefore the day of the int nisan will foreede the are of int Tinier Ho, tho day.:

Palestinian gens n .. is nisan 1
Cis Passable fertival was is th celebrated at the ming of che fourteenth day of the luxor month. Heberw word "ait"" is synonquous with "metinnily ot the conc. "
614 Cervory the same month [abib] which coincides visit the vend mine (!).) which bincinotes with mating of the th wits.
(6) Thus the verso comment regulated the neoutcos accessing is the annie of the moon, and the whole year in acceredatice with the equate of the sere by unsigining as a slatiting front the liner months eairgiding witt the beginning of a certain salas reaver.
6.5 Io determine the thonolit abib the nome or lave imminent nivitinily of the burly woo biting observed, the ft in fruit of which had to be offered in the a
661 Epfing and Stiasomaier, "Aotromisches ans Babylon," Freiberg, 1889, where are found the epphemprides of the $3^{\text {rd }}$ and $4^{\text {th }}$ centuries Be. indicating separately the the conjure. ions and the visibilities of the new moons.

FIRESIDE CORRESPONDENCE SCHOOL
Takoma Park, Washington, D. C.
Name \qquad Addaress

Study \qquad Lesson No. \qquad Date \qquad
DIRECTIONS.- (a) Keep out of margin. (b) Write on both sides. (c) Number pages. (d) Leave blank line between answers. (e) Make your writing legible, and be careful as to spelling and grammar: (i) 1/se printed sheets for first page only.

Odd 189 days to Jewish epoch $=$ Epoch of the world. 414 the sugn in Sealigers day areecded Telaufrha of Noses by woone trous, 35 doup.
Qngmshis and actim $2 \sqrt{3} 8$
theesod 239
neareot and latest Pashover in tive of Chuint agoil o is Whay 6
7 we yeurs = chruots many $=245$ 265°
Politicul tianslations an lertinouy of gregohers -130 years before ehist as typlained in Book. II 2 e 5.
Dealiger ecflains the true ane tijpieal lunc as slain on
 Calbbe "Eines" 294
Yoer ot Exodes Prolog - Y
In tine of christ y we foldo Enroprean gows, yeleñ was vanderivg from x anelur dos, ohur ósile.
Ancient fows Ascrued towir Lehóshas Proeog - 5 Wareh Pansovers cis i P Probey-3
Tassean in $x(x$ Th Therses Sualso, p 108 Troloy- 8
Qught nöt ls seun wondarfue if the eivenny from the tirkenete to faurliened nusun sheved be tatsen for sluening the P assover Troer -9
 "over slep lengte boy phasb" firm the Shafe Qel moneths of ancient febrens were 30 dry, awd aee Qionysius spacahs of "Sallūn Lumae," Page 10 . Pagel Syoygg - Tage 12
Epelogne of the noon beg us from the velerdean, but Qutie ivie ouy from sunset I Page le I
12 pland moon Tusi u (rost, bwt by blaur duu Wun Page?6. Gromo Trin, fusexcle efoilogues from Nhsan are as much ehaldacai as Aeversh. Culifous, furstof ale, starled the eprelognes of the Novi pan Lhe nueridian. Paged >6 Sioscorts (1 Whae. $D 1$) Enubobeswie nowih.

Frue 108 oy himh their yor sharted mell Acoue. tionich are Chalderu in rune.
ghe compried accefoed the law from the vioge 79 Weaniny g Tehurfha
Tenurle vyle loclas 10 hevar excle. Page 79 ,
Qet 27, funat new moon of T Tarl. is
Qubutimal equiriot versus heave 80
281 expoles form Qmo Mhereí 80
"Hace pribleherrima" res.
Smatiog foy of bewn:i) 85
ace ariental vations delernimed. nove from
The weredian inforkinit 85
Helrews cousicder new mouch from "phanis" 85
18th hour frow merdian = sucrise, and hequmurt of boher. Lhis eoutbe treb wheren is past, \therefore it is vanaferred to following "eres." 85
177 day $=85$
Qdue and Bache 86. Wero hambahar forsou 8 b
"Iah" = 18 hours 87
Inlerealation 93
Persceuliong hone who celebratet
fework pasch by Conuwoorn \& U ebor. 105
New movily katia shapeg, reoor 105 ist finvahayele' is $4^{\text {th }}$ in Fari and $5^{\text {th }} \mathrm{me}$ thanan

mi jenral adar 105
Pasomer gherefuceon $\}$ ros
Condecuncedte $14^{\text {he }}$ day heresy 105
Epophaw ens - evel it $14^{\text {ch dey }}$ herery 105
lieariñ Thave Qpprie 2 - Invish phasis Qforre 4.
Eurofeans were focur Viecr eyole 105
at the Equut anl celebralur heur
at the Equurt aur celebralurq Heur
pasele mact oflerthe Equint, 106

Thmerson, Guee 27, 1844 , whdungtt C_{y}, Secoudly, we caned not show that the firiod woved not end in the syaring of to tahe off time and soom by duseursions which might have bum woove than mionghtiy; Shunday, Gume 27, 1044,1939

Twibey - 2hunsiay, Angnat 8, 1844 . or lale ing the of the mov, woued eurly nublse one day' difference un the inive of il's afofoearanee; and therefore the asbinanom. ver Jale of the nowere would nat huetitu one day determin We geviah 14 $2000.5,1843$ PP.134-1
Qqricultural Seasous aud Feasts - Barluye Lambs,
Wheat - Wine.

Seminus 2inolatiout Lugns of the Twes, Leee, 5,, 543 , 135°
"This, therefore nuot-be the civil year commencing in October 1842 , and the ceclesiartiseal year ending april 1844 , wine months of each being included in a. 10.1848 She new non in afrit being passed, we are eons quently beyond 1843 , not only gentile, but genioh, chis and Ecclesiastical time, and oke row' in the year 1844, ace cording to an chronology." Midnight Coy, April 25,1844 .
Thundery, Way $2,1844=$ Article by Sunn an how he recons cenceficion from reign of Tiberues.

If the 490 years (or 70 melos) expired at- the erneifition and ascension - the season of which caresponds wilt on s month of way - why do we not look Io about this period, for the terming تion of the 18,0 and ' $\% 48$ years? Io ny anind me have infinitely more reason for this, than for having looked to the trinination of the Jewish year. Aceording $l y$, t we, we are entering upon a fecriod of five or sit weeho, " bi with hoopoes of umustality."
Widoughtery, Thurs day, Very $2,1844-$ George' Sterling.

In Wemachoth $x \cdot 3$ the enlting of the fag. clial thing en the 16 ti Nism is devented, il difuties of the Sachedimm refpawee, at the cobor of the $15^{\text {-Th }}$ Nuas, to the field freviourly *lwated, and wailed mitie the reapher said, "The sum is oone dowr.' the pethen refpecied thene noodd; ouly ther was it foermieted 15 fort in the sichele, keame with the sitaing In the sun the $15^{\text {the }}$ niane wos krong it is an vorkeh says that the month, and Thus, of eovise, the day Lor, beqar wind ' the Thirs evening, wher the sum had sut,
Chrou. 4 Geoq. 2ubio, to ch, Ed. Cazp-ari, p, 3 Sufe of ceduer d ω the Ceqter for Adyentistrkeser,

The gens, we are told; commenced their month with the first affreatarsee of the moon, whistle w that etinate, was nawally the second evening after the charge and they commenced Sher year ruth He appearance of the new non nearest the ripening of the barley harvest. Their years eauristed sometimes of hivelve and samelince of thirteen noons, an intercalary more being added abail ane in lure years. If, on the appear. ane of the neon al the ind of adar, the $1 \sim$ no we of the precede ming year, There was a jar bally That the bailey would be rife by the fourteenth day of the month, they made that moon the first month of their rear; but if the barley wand nat panobbly be ripe riel after the $14^{\text {th }}$ day, they added the what of that maun $i \sigma$ the ald year, calling it De-Qdar, or the second Adar. If, tresefore, we ear' aseurlair the tire in the year of the ripening of the barley harvest in Judea, we way know very nearly the commiencencwit of the Jewish sacred gear."

Advent Sliced, $p \cdot 274=$ gan. 1845

Authis instanee of the harwest-moore.... the wiodour and beregileure of the 10 iby is cinafrie mons, who reeely urdered the comret of the rioore so, as to berlins wore or lum light an alt fourt of the earth as chein severve servibes and seabous distances from the equaror, where the weather aud searous sie more mmeertain, Thet aultinunol fuel woons rine very saon of eis sum-sat for severvel wevinge $t \stackrel{t}{\text { sen }}$ gotter.
 are aring to the different angles made by the horigon and defferent part of the whoow arbit; and Ahat the prooin car be free but mues of Fivis in a orear, in chose poares of Ghen orbit which rise widh the least angers.

Fangunow, 24 ,
How the different pares of tha scliptes, ou arcomet 'ito abeiquity to the sarthis acio, malne very different anglod with che horigon as ihey rise on smallest angles, ret with the grealiat, and voer verse. \&. Consequently when the suove is in thone signs which rise or set with the snallest angles, she rises or sels with the lest-difference of tine; and rimele The grealest differenel he thwo signo which rise or net
nith the grealeat ana-les. Fergurou 243 , mitt the qrealiat angles. Fergurore, 243 ,
In northem latiludes the smoleat areghe madeby the extiptie and hanigon is wher arie. rises, of which fime sibra sets; the greatéat wher Librá rises, at which Eine Qriso setelt. Frome the rioing of aries to che riaing of Sibra (venith is 12 sidere of hours) the angle inereases; and from the rising of Sibre to the rising aires it deereanes in the sures poropartion, Ay this artiale and the foreeding, it af= frear that the ecliplie rins fastist about aries, and seovert atont gibbre [But, viseverse, Eelipto sets slowent about Cries, and fasteit about gibra].
Fergruyen, p24y.

Comfo. undmiget Cry.
Qpice $20,1843$.

$$
\text { Tebet }=29
$$

$$
\text { tau. } \frac{29}{8-9-33 \text { to } 7 \mathrm{eb} \cdot 6-20-56}=29-11-28=11^{\mathrm{h}} 23^{\mathrm{m}}=\text { cal }-=18^{\mathrm{h}} 41^{\mathrm{m}}
$$

$$
\text { Shebat }=30
$$

$$
\begin{aligned}
& \text { ebat }=\underline{30} \\
& \text { 7eb. } 6-20-56 \text { to war. } 8-8-57=\underline{29-12-1}=11^{h} 59^{m}=c a l+=30^{h} 40+
\end{aligned}
$$

$I_{\text {yar }}=\frac{29}{6}$

$$
\text { thue } 5-3-28 \text { to Iuly } 4-18-50=\underline{29-15-22}=8^{h} 38=e_{a l}+=20^{h} 42 t
$$

Tanmeng $=29$

$$
a b=\underline{30}=\underline{\text { ang. } 3-9-45-\operatorname{Sef} 7 \cdot 1 \cdot 23-55}=\underline{2 q-14-10}=9^{h} 50^{m}=c a l+=15^{h} 42^{m}+
$$

$$
\text { Elul }=\frac{29}{\text { Sefot. } 1-23-55 t_{0} \text { Oet. } 1-13-19}=29-13-24=13^{h} 24^{m}=\operatorname{cal}-2=2^{h} 18+
$$

$$
\text { Oet. } 1-13-19 \operatorname{lot} \text { Oet. } 31-2-2=29-12-43=11^{\mathrm{h}} 17^{\mathrm{me}}=\operatorname{calt}=13^{\mathrm{h}} 35^{\mathrm{m}}+
$$

$$
\text { Troni }=30
$$

$$
\text { Oet, } \frac{30}{31-2-2 t o ~ V o o, ~ 29-14-2}=29-12-0=12 \cdot 0=\operatorname{cul}+=25^{\circ} 30^{\circ}+
$$

$$
\text { Henvou }=\frac{30}{31}
$$

$$
\dot{N}_{00}=\frac{30}{29-14-2 t \text { lee. } 29-1-14}=29-11-12=12^{m} 48^{m}=e_{a l}+=38^{\mathrm{h}} 23^{m}+
$$

$$
\text { Kialer }=30
$$

$$
\text { Tebet }=29
$$

$$
\begin{aligned}
& \text { Jerusalem } \\
& \text { Elul }=29=T . P .=1^{2} 15^{h} 47^{m} \\
& 1844 \\
& \text { Seft. } 12-15-37 \text { to Oct. } 12-1-45=29-10-8=10^{\mathrm{h}} 8^{\mathrm{hm}}=\text { cal. - } \\
& \text { Tiori }=30 \\
& \underline{\text { Oet. } 12-1-45 \text { to Mo0 } 10-11-57}=\underline{29-10-12}=18^{h} 48^{m}=\mathrm{cal} t=3^{h} 40^{\mathrm{hem}}+
\end{aligned}
$$

Luolatious from Chronological and Geographic.
cal Lubioduction to the Life of chase by
ch. Ed. Eanpaí - Ir. by
hive y. Evans, b, a. 1876
Ancient juminh Liadition (Mab. Baba Kama, fol. 80.2) Lecher that one of the privileges of the 2svachies, when dwelling in the lave of trial, was. That tach one had the right of eateling fish in the she of germs arch, with the single restriction of not ineirfening by his net those inhabilsuts of dinalum, who wee fishermen, and who were wont at this season lo ply their craft, in company with Simon and Andrevo, upon the labe. Hence it is we always. find your at the Sea of golihe before the P assover ((gout $1: 37 ; 21: 1 ; \times 1: 1 \mathrm{ff} \cdot$), but only at - this season... (as above, for the million grist's who would require forovsions) Page $\times \times 11$,
all the onlivorhs, it is thought, may be dispensed witt, 'folly the spirit, nature, and doctrine of guess is seized. yet this is a great and rumors mibalse. If ferns Chive is thus sperehealiged, and severed form the relations of tine and spare, such fabre spuilivalization receiver li pmumhent in the result that the whole objectively hislonioal dharacter of the person of g cis becomes eventually donbifful, and'is subtilized into the ideal. It belong to the very nature of history to have ils roots in live and space. The reality of the histanieal faernon is eonditionaled by the fact that place, relations, and tine are clearly ascertained...

So, $1 \overline{0}$, do we frequently read that the Synoptinli tevolulut berms wis erneified on the $15^{\text {th N Visas; but that the four ch }}$ Gospel, on the other hand, places this event an the preparationday, and is thus in conbiadiction not only wilt e the Synoptiolo, tut also with the veritable apostle Gohre, who, according to the biadilion of Asia Minor, taught tat gesus was ericified on the $15^{\text {th }}$ Nisans. 7 rom this it is eoveluded that the same Gobs could nat be the author of that gospel which declares precisely the appaiti. Slims abjection, haw ever, disapfacars so soonas'it is shows that not only the author of the fourth Gospel, tut also The Synoptists and the biadition of Asia Minor give the 14^{-h} Visave as the day of the erveificion, Page x ix

Meg.1.4. If they had read the Soroll in the First Adar, and the year was intercalated, they must read it again in the Second Adar. First Adar differs from the Second Adar only in the reading of the Scroll and in giving gifts to the poor. (Noter If a man did these in First and not in Second Adar, he has not fulfilled his obligation.)

Yeba.16.7. R. Akiba said: "When I went down to Nehardea to ordain a leap-year, etc.
Ned.8.5. . (If he said) "until the rains are over, (it is binding) until Nisan is over (Note: March-April). So R. Meir. But R. Judah says: "Until Passover is over."

Eduy.7.7. They testified that the year could be declared a leap-year any time during Adar; whereas it had been taught: only until Purim.

Shob.9.7. In like manner if a man hired a house to his fellow "until the rains," (this signifies) "until the second rainfall." (Note: Usually falls during November).

Taan.1.1. Until what time should they pray for rain? R. Judah says: Until the Passover is over. R. Meir says: Until the end of Nisan, for it is written,
tBe glad then, ye children of Zion, and rejoice in the Lord
your God: for he hath given you the former rain moderately, and he
will cause to come down for you the rain, the former rain, and the
latter rain in the first month. ${ }^{\prime}$ Joel $2: 23$.
(Note: Since by that time (Nisan 21), about the middle of April, no more rain normally falls before the following feast of Tabernacles)."

Taan.1.3-7. On the 3rd of Marchesvan they pray for rain. Rabban Gamaliel says: On the 7 th, fifteen days after the Feast of Tabernacles, to give time for the last of the Israelites to reach the Euphrates.

Single persons continue to fast until the ond of Nisan. If Nisan ended, and then the rain fell, it is a sign of (God's) curse, for it is written, "Is it not wheat harvest today?" (Note: Late in May, when rain is a misfortune). Cf. I Sam.12:17. See also Prov.26:1.

Sanhedrin 1.2. The intercalating of the month and the intercalating of the year (are decided upon) by three. So R. Meir. But Rabban Simeon b. Gamaliel says: The matter is begun by three, discussed by five, and decided upon by seven; but if it is deoided upon by three, the interaslation is valid.
R. Sh.2.5-7. There was a great courtyard in Jerusalem named Beth-Jazek where the witnesses assembled, and there the Beth-Din examined them in the following manner: The first pair to arrive were questioned first. The more important of the two was brought in and asked, "Say, in what position did you see the moon, in front of the sun (i.e. to the east of it) or behind it? To the north of it or the south? What was its elevation on the horizon? To which side wes its inolination? What was the width of the disk? If he answers that it was in front of the sun, his evidence is worthless. Then the second is brought in and questioned similarly. If their replies tally, their testimony stands. The remaining witnesses are only examined cursorily, not because they are required, but that they should not depart disappointed (at not having been heard) and that they should form the habit of coming (to give evidence). The President of the Beth-Din declares, "The new moon is consecrated," and all the people respond with "Consecrated, Consecrated."
R.Sh.8. Rabban Gamaliel had pictures of the moon on a tablet and on the wall of his upper chamber. These he used to show to the unskilled and say, "Didst thou see it on this wise or on that?" It once happened that two came and said, "We saw it in the east in the morning, and in the west in the evening." R. Johanan b. Nuri said, "They are false witnesses." But when they came to Jabneh Rabban Gamaliel accepted their evidence. And two others came and said, "We saw it at its expected time, yet in the night of the added day (Note: A 30th day added to the usual 29 days of the month, when the new moon failed to be seen at the expected time. Cf. Arak.2.2) it did not appear;" and Rabban Gamaliel accepted their evidence.

THE SAMARITAN PASSOVER, by John E.H.Thomson, D.D. Quarterly Statement of the Palestine Exploration Fund. Jan., 1902.
As it was now considerably past midnight we had to think of returning to Nablus. In gratitude for his kindness we each contributed medjeedie to the high priest, and with many salaams took our departure. The moonlight, as always in Syria when it is near full moon, was pieroingly clear, so we had small difficulty in riding down the rooky pathway to Nablus.

JERUSALEM CHRISTIAN TREATISE ON ASTRONOMY, by Gladys Dickson, Jeruselem. Her notes are taken from an old manuscript found in the house of an Arab in Jerusalem.
If the year commence on Monday there will be disturbance among kings, and excessive cold and great winds, and snows in January and February.

In April an eclipse of the moon indicates snows and strong winds. Corruption and contentions will increase in the land, and lying will prosper among people.

Miss Dickson's story was taken from the Q.S. of the Palestine Exploration Fund, Oot., 1908, page 317.

AN OLD HEBREW CALENDAR-INSCRIPTION FROM GEZER, described by Prof. Mark Lidzbarski, Greifswald. Quarterly Statement of the Pal. Ex. Fund., 1909. Page 29.
I do not know in what strata the tablet was found. Mr. Macalister placed the date in the sixth century B.C., but I take the inscription to be much older. In the preliminary notice it was remarked that the stone contained "some kind of oalendar." This is correct. The tablet presents a collection of months, not according to adopted terms, but it is the attempt of someone, probably a peasant, to group and name the months according to their agricultural importance.

The inscription runs, therefore:--
(1) Nonth of the fruit-harvest.--Month of
(2) the sowing.--Month of the after-grass.
(3) Month of the flax-harvest.
(4) Month of the barley-harvest.
(5) Month of the harvest of all (the rest).
(6) Month of the pruning of vine-plants.
(7) Month of the fig-harvest (?).
(8)

Comments on the Gezer Calendar by Dr. Samuel Daiches-- Ibid. p. 116
It is worthy of note that we find in the Babylonian Talmud that one of the reasons for proclaiming a leap-year was the delay in the ripening of the ears of barley. When Adar passed away and the barley was not yet ripe for reaping, the year was made a leapyear (see Sanhedrin 1lb). And the old Babylonians, too, called Adar II ${ }^{a r a h}{ }^{2}$ DIR-SE-KIKUD for the same reason.

It would clearly show that the Gezer tablet contains a generally recognized calendar. The difference between the two calendars would be this: while the Babylonian calendar contains all the twelve or thirteen months of the year and only six or eight of the names are agricultural, the Gezer calendar has only those months which are of agricultural importance. It is therefore, a purely agricultural calendar, but one that was generally recognized.

Agricultural names of the months are no doubt the earliest. The Gezer calendar is most probably much older than the insoription itself.

Comments on the Gezer Calendar by Prof. Gustaf Dalman-- IGid.
The month of the barley-harvest, without doubt, is here April.
The "harvest of all" may mean the time when, in all parts of the country, harvest is going on. This is true for May.
"From a fuce and earefue review and Eammation of the question, we are still convinced that the live Jewish seventh month cored only synchronize with aver October, - commencing ait the first affeeainance of the sen moon on the 13 of that month and ending with the affrearance of the new leon on the $11^{\text {th }}$ of Covenber. Advent Shield, p.273.
at the present time the Rabbinical gens commence their year witt the new wo on nearest the vernal equi. not, irrespective of the barley hardest; so that their finest anonch synchronize' with our labels, and Their semenele, with on r Sepleniber; tut it is evident that as they disregard the ordinances of Noses and subderitute for then their kiaditions, they are therefore of no authority as io the true tine for the commencement of the jewish year. Acearding l_{0} the earaile Jews, the tine year cannot eonnence julie' the appearane of the new moon in afarie. Advent Shield, $p, 2>6$

Cbrenvation isilf partially antingrated, and it sove extent entirily avonded. prtr, line 9 .
"If the bine congmelvor, that is, the applearavee of the alow had afewago. been the slandard, there womed have been lo place whatevir for coves pulution: tus it is elesr how the elraracteristies of the manth coned be fredectermined wude ankenracy." p. 17, live 12 .

Adjustment for 129 13.er of $p, 18,19$. Ostine length of synodic wovilo p. 19 luve 17. Larailés hich R. Bandive wrs foumber of Soms of Issacher $p, 21$
at Incerots the sum neusthe in Sebres p,25-hue Rugunemy of moveh soeres by lwo $p, 30$, lue Tear- Sarme $P \cdot 30$.
Wendeous - 0,31 .

We Rossi- the finst to moealigate 4 For what does it profft t_{0} lenow and under. Hand the calendar syatem - how it was pherfected geneticely if you do mat have the guarantee that this ealendar agrees nost minutely ruith the shy : " $p .4$.
"In the time of the Sanhederim it wer the rule "~mabre the twe conjumction the starting pout of the comprulation." p.39

Origior of mendian $p .3 q$

1512 yous ago Telanglea Visar secunsed nuces earlier thav hory 0.44 ।

The vehaj+che forve absolutaly that te Colendar was inbíadueed by kile. It p.45.

Vecloday of the dole of the month eove wever be fixced ame and for ale, $p .43^{-}$ Elat mever compleli according to Vahardea Mol= 1, p,4s.
The sheingel were added to bring the new calendar closer to the ald ehranalogy.

In 2 ad apach, Ute beguming of che monith regaded as a judreid aet. of p.i4 huslend of rlielar day, tie ratural duy from ane sumbise or aunset to the nest wos chosen. p.l Wucts a meacuring ros. p,1, lue 5) Wean duration of synordie moncto dafeuds whon the prosition of the ecliptie p.rbl gamalcel made it a jixed lengeto p. 16 Since time of Escre. Elul mewer hous hoene congunelen plelè Digitized by the Center for Adventist Rebeitener refurenees P. 16 , mole 3.

Both amcient Jews and Babylonians paid respect to the line of frele moors. Ln general, the heathen nations allegud
 rincted the Jencich nation to kepe a sprecial feast ine the fruce moon period of the finst mourch acte in to doy. Ihis festival was is be lmown as $\pi D b$, on pancover, while the first mouetitiofes maveed \breve{l}^{n} it, signifying geven eowe. Sime barley eorv is the ecrliest haviest in sepio, the e, ic. Alawow hat eommanly Krefured to in both Lewise aved elisistian litenature as the "wonth of new fruit." It is Use firiviary foulfose of this study Lo dencribe (1) the Babylowisur worship of tio full moov; (2) to
 parnover sumbined T_{0} the dete of foll neose; \}avd (8) Lo show whatter the fewr in the Five of ehicis stiel absurnd the agricneturabinlaws of the Penlatuncle, or whecheri they hada, aly ady copitiested io the Bिobytimiou thend of ealendaric law as latex 1 by Hicel II. Yhere are stident of ancient Ievirle history who naiubiir thet this eleange hard evalued ot the tive of the ervcificions.

1. Babylovian Warshif of the Fwle Woou

$$
\begin{aligned}
& \begin{array}{ccc}
71 & 12.0 & 115.6 \\
33 & 6.5 & 34 \\
72 & 1.1 & 48 \\
73 & 8.5 & 69.7 \\
74 & 1.5 & 29 \\
76 & 9.5 & 51.9 \\
77 & 4.5 & 16.9
\end{array}
\end{aligned}
$$

7 dago offer 14 ch
5 days golivits
7 daus residense at Trais
1 day $=1$ st day of weele

$\begin{aligned} \text { 20th after } 14 \text { th } & =\text { Sunday } \\ 1 \text { st geter } 14 \text { ih } & =\text { Tuesday }\end{aligned}$
$\begin{aligned} \text { Hence } 14 \text { th } & \\ \text { Bent } F . M \text { in } 60 \text { a.D. } & =\text { Monday }\end{aligned}$ Pent F.M. in 60 a.D. $=$ Monday Agyor wabe दime one dayday, then passbuer woied came R Mo day of ér Finl., which is meonsvolent. There is no reavore for Jhis che are day more.
This conreidence betweer Iso dey of the wects and the eunar 12 th doce ing afo whe with 58 ais. Those who wist thet, 59 wise the year, fail to recogmise that over six yyarg,
1 Josefer Sealiger, be Emendative Temparme,
2 S. Sang bors, Babytorizie Mevologies

From letter of F. Doerner, Feb. 14, 1940.
and studied in detail
Trust you have received/the positivs (photostats?) sent recently:
Giblehr (2300 Evening Mornings)
Bengel (The 70 Yearweeks)

On the papal crown I found further material. In the work of the evangel. theologian Supt. D. Christian Gotthild Blumberg. (Zwiokau i.Sa.) Exeroitio Anti Bossuetico, there are valuable statements which prove that the tiara had the word Mysterium on a golden plate. These statements caused quite a controversy. A catholic theologian published a refutation: D. Johannes Ludwig Hannemann (Kiel), Mysterion Papali coronae inscriptum Non-Eris, Hamburg 1698. Supt. D. Christian Gotthild Blumberg replied in a second paperstating the case more olearly: Mysterium Papali coronae insoriptum, Zwickau, 1702.

I had found some details on this controversy in an old theolog. periodical and was abput to look for the works mentioned when the State Library was closed in order to save coal.... Should it be possible for you, try to find above mentioned works in London or somewhere else. Present conditions make research work outside the library here very difficult. In any case, we must look up above works !
I am still looking for the material you wish with regard to cardinal Cajetan, as well as on Daniel 11 and 12.

Prinoiplos Covorning Observation of tho Whoos

"But this idon [obsorvation oniy] pomits no small asfrloultios. For how, as Soaligor rightly says abovo, could so many thousande of Jows fix tho new moon from Its appoaranoo, or avnit tho mossenger from Judaca, whon thoy wore acattored by such long distaneos, in low valloyw, in northorn oitos, in wioh tomperte and fomiliar eloude often begrudged the eyes of man the vislom of the meeent moon? rath rogard to this, tho moon could be soon in a vory fow houre aftor oonjunotion, although vory rarely. Thom, again and again, tho phasis of the soconpanying now moon day 1212 appear on the seoond day aftor oomjunotioas. Thue the month to be appointed might bo thirtyono days, witoh is absurd in a lumar yoare Again, tho sane Soaligor, in Canons of tho Isegoguo, 12b. 3, onp. 6. pag. 2C6s Vory froquontly, tho moon offoots no power of her bolng seom for a whole throe daye from conJunotions and it oan happem that straightimy from conjunotion, she oan be soon on the folloning now moom day. In this vay, the oivil month would ofton be only 27 days. Iniood, it happons that tho moon com be hiddon and soon on tho same day. but oortainly, this vory raxaly ocaurs; and it doos not happen oxcopt, as P1Iny sayg, wion the aum 18 in Arios. Thorofore, it is in the powor or no nortal to bogin the now woon daye from the appearance of the moon, beeause the the of the Fision may bo nitogothor unoguni and unoortain. Purthornore, evon if at tho sane timo tho mon moon oould be seen, jot sho might not, booouse of overhanging olouds. Theraforo, it is most foolish, whet coritain Jovis, anolont as also rocent, varlto, that whon asch ternio vms atumling, it vas the enstom to appoint tho now moons from the vision of tho moon. Tho Ilohamodans, who bogin tho now moon of Thunrrom three daya or two days, aftor the comjunotion of tho luntinaries, could not orocute this. Por not in evory moon, not ovon in a oloudless slig, could thoy soo the
 whioh is said in the oftod Talnud - that nomotimes it happenod a oortain appeoranop and 1 liconoss of tho moon vould ocour on the 27 th day of tho month; and 211 the poople vould shout, Molcudasch, moindasoh, Sanotielenta ost, ganotilionta est.
 tion of the SIymgoguo, the new moon would be appointed on the noxt day.
"Cortalnly exporience tonohos that the moon runs upon the oyes sometrimes quiokly, sometimes slowly. Thenco, if tho month is to be cormenexi ly a 200 k at hor, how aas it be bogum evorywhare by all of the carth on the same days hov can the game foests be jopt overymhere on the sume degi Inileed, elthough no oyolo gan be constructod to exantly answor to the colosibiel notlons of the moon, yot, by it, tho now mooms aro dotorrained with loss ovil., loss inconvonionge than from viaiono"-Ducherii, Aogidis, "Lraotntus Do Paachali Judseorun Cyolo," po 373. Antverplae, 2654.

P1Izy, Rò \& Visiblo 014 and Now Ihopn on the Somo Day

HTho Noon makos her doublo oomjunotion with the sum is no other aign exoopt Coainh, winio Sagittarius is the only sign in vimoh sho has no comjunotion. The old and the now moon are vialble on the seme dey or nifght in no other alga exeopt
 Pliny, "Iatural Itstory," Fro by Bostock and Iilog, Vol. I, pe 49. London, 1855.

Hovolius Ro the Apporarage of the Marth and Seoond Moon

"But me onll the homed moon that phasis, whioh to some of tho motonts is the seconi moon, booause, on the aboond day after the conjungtion of all luntmurLes, aho my bo ear 150 ost seon, and follows the flrat moon. But, beoause on tho sooond day, she cannot alvnyg appons in sight, all those causos can hindor whioh do not allow the flrst moon to be soon on the flrot day after conjunctione And the partioular hindranoo is whom sho is turnod about in the al gue of short sottirgs, of Whioh kind exes Ganoer, Ieo. Virgo, Tilum, Scorpio, and Sagiltarlus. For dithough tho moon may be in perigeo, and aroumd tho horthorz border, yot if
 tod on tho socond day."-110wolius, Solonographfa. Pe 281. Godanus. 1647 .
"Since Grotefendis decipherment of the proper manes in the Persepolis inseriftions, it has bere generally reeogniged that this movaroh is Xerces. The Atherew form. A hashnerish porropponds Los ctie Baly.
 1936.

Rrsitur $3: 8=$ Riaspara of? fourad.
"The 13 Di of [adar] this month is kenoren to have been miluelsy, and the 14^{-h} ande $15^{\text {the heloy." 2dine, p. } 231 /}$
In laler Judaism," Enther is inserted write the Saw in ite synagog hoels and is treated with the hiqhest neverevee," $\frac{2 d r y c}{}$ p. 231 , p. 23

Satiin-2 chrou. $29: 3$: He himese, in the first year and mouth of hio neign, apaies the doono, i^{2} : I
german-2cluon, 29:3; "in the firist venoth of the firat year of his

Biblia Nexaglotta (Fuuls ans Uagnalls, 1901)
Sefhiagint (Vatien bect) "Andit aume to pass, when he ross culäblished ause his Limodowe, (Br, alood) in the firstrwonete, he ofened the doons of the of the ford and neforired Iteus.
"He in the first year of his neign, ire the first zuaith, ofrcued the doons of the Howe of the Lord, and nepraires theu," Howvels Merlue, 1903.

Lefheogint, Bagner Eshbiou
"And it eque Io pras, wheu he rovs eneoblialee oven his bungdoue (Irr, slō0), in the girat Sord, and he ofopened the doons of the horred of the. tas tas thit tao rea te8
tha tha tha tho tea thes FIS fiS fiJ FJO Fea
 upon the tive eonimuetion (Sederabry, p. 64 3)! bitp waimomides wisinti that Is the suear neations of sure arid juooty is his 4$\}$ tine having hee
 Giruebish. - kiddureh ha-hodeoch, caf. Virg see. 7,8 .

10

$$
\text { Tos Oponervents }=\text { ? }
$$

$$
38-37
$$

$$
\begin{array}{ll}
443 \\
406 \\
58 & \frac{448}{480} \\
40
\end{array}
$$

"For he whs would righdel hnow these mean cowrev, wonld eysily perceive those phans by which it is eleady havon wohen the whw maon waned show thensef. For frole that might of the reputh In which the new neo frest bepperg 10 that niget of the neft mownth in whioh the new huen apprais agsiue, havery-mile whble drype twterveine.

10 "Butwhy isit that hy this plan of computation [modere rabbiviosel], we mener appoint the caleld of Tishri either one the first day of the weeler, or onsthe fouslh, or on the sixth? Withont doubt because Thir conpentation is govermed, as we haw reported above, not acoording to the sxact congruction of sure and wesoe, but areonding to the weav. Whevel it happeus. . That sowetimes the caleut oceur wfon Ule Exact conginetion itrelf of sue and reown," - Hoses whainanides, KLe Saerificier Siber, $p .374$. Tr. Le Comfiegne de Veil. Sondon, 1683. eg, alpo acborimit, cleonology Hopiont Nations, $p .66$. Tr. Sachau, foudru, 1879 .

- She moors, firct virible on one evening at Jevesalene, hight be reen the locming bifore, acconding. to the recleoning of places weat of Jermsialeme, or might be inchisble antil the folevirig evering, aeeording is th rechowing of places eart of it." e. ω, wainder, "the altrumury. of the Bible, $p, 298$. Lee, ed., forverer.

12 "Inst tim foagnent shwor, that Aristablur. by mo means areaphied himreff mieth anhy fohiloraphieally explaining ansy the text of the Pentatench, brt that he neally aque a deseipeis aud Esplanation of The Jewish low." - Envil Schiirer, the Tuvish People in the Time of Plerist, Niw, II, pail IT, $P, 241$.

11 Esod has made manifest his wiel in refarence t to the Whareheavace and kislen and (concequeitly) the whole yeer by this, that he made the
 (wele?: Thet which we nentioned aheady. Jirough this Che monchs "rceiprocally, aud they polow Each other as Ther shoued. " Samuel Tosnambi', "Anti-karaite' Uritingo of 3 aadiah soon", Jewiab Ravarterly II gléphan terburt Saugdon to the coulnary. ef. Boby lowian Mouslogies and tue Sevinice Calendars, $p p, 89,96$. Sondon, 1935 . 15 For the compntation of Jebilee gears, sie Q. Sehiapareli, Astronony in the Oed Teatamenta, pp 144,145 . Oxford, 9 Digitized by the C
\square

Chapter II

While in Palestine, the depressed position of the Jows often barely managing to make a scanty livelihood inmicted upon the disoiples of the sages, the duty to marry only at an advanced age after having completely finished their studies so as not to be hindered in their brain work by worrying cares o subsistence, with the Babylonian Jews living in luxury, it was generally the oustom to onter into marriage before the 20th year, and it was not a rare case when a Babylonian studying law left his hame country as a husband, father of a family, to go to Palestine, there to complete his studies. Soom after his return fran Palestine, Sunuel too was given a faithful life conpanion. However, he wes not willing to Leave hor and go far anvay, but intended to continue, with his sciontific studies, in his homeland. Aside from practioing medicine and law, he applied himself mainly to astronayy, that science which is to bring about the most stimulative impression of the sublime unon the human imagination carrying the mortal human off his feot in acmiration of the greatness and amipotence of the creator of the universe.

Ailroady in ancient time, Babylon was the home of astronomy. No other country then this afforded the observing investigator a wide unhindered viev over expended plains and in a clear sky not darkened by clouds which extraordinarily favored the oultivation of this science. The inhabitents of these regions aotually have occupied themselves with astronanical observations more than other nations and stood in high esteem on account of their lmowledge in this sphere. Especially about the oity of Nehardea, the place of Samuel's residonce. Plimius reporte that it was the seat of the Hippazenians, a. farnous sect of the Chaldoan wise men,

In these regions, probably also the Jews become friends with the science of astronomy and acquired multiple knowledge which seams especially significant with the house of the Fatriarch in Palestine whioh come fran this country. Here Sernuel too, cultivated with habitual geal this sublime science.

But while with the Cheldeans-as on the whole with most of the nations of antiquity-mastronomy was closely tied to astrology-mthat delusive soience which protends to be ablo to predict the fato of mon Ircm the consellation of the stars, in fact, thanks to this latter, it had received its proper significence-with the Jews, it received a much higher meaning.

The study of this science was deolared a religious duty because it leads to the knowledge of divine amipotence and amiscience. Bar Kappara, one of the most excellent students of \mathbb{R}. Juda ha- Nasi, taught: Who knows how to figure out the courses of the stars and anits to practioe it, to him tho words of the prophot applies: "they regard not the work of the Lord, neither consider the operation of his hends." Isa, 5:12. In the seme sonse, also other teachers of the law taught that it was meritorious to make estrononical obsorvations. Heeding the words of these toachers, Samuel too oocupled himself with astronany chiefly for tho sublime purpose of cultivating merely the scientific side of it. Though he associated. with hoathon astrologists in order to inorease his mowlodge, ho oven had an asm tvologist by the neme of Ablat, as his intimate friend. However, he censured. those of his coreligionists who pursued the pseudo-science of astrology, seying: With the astrologists who are constantly looking to the sky you will not fine mowledge of the law. He also decidedly opposed the viow of the astrologists that the fate of all men is dotemined unalterably by the constellation of the stars, Ho taught, in the contrary, that it is within tho might of man by good and God plaasing deeds to be spared of the misfortune the astrologists pretend to have read from tho constollations. He further tried to comvince his friend Ablat of this, his Jewish veev by producod facts.

It is not possible exactly to detemine the extent of Samuel's lenowledge in the astronomical soience, for aside from the numerous teachings and sentences in the two Talmuds--of winich only a fow cane under the province of astrology-mo written works of his have come down to us. We do not evon have reliable information of the fact that he has been literary active in the sphere of astronony. Although,
two works are oredited to him but as to the Jaralithe de-Swnuel insight into which wes mede possible to us a few years ago. It has proved to be of muoh later origin. It can be assumed with cortainty that as to the othor works bearing semuel's name, we also have to do with pseudo epigraphs.

From the following words, spoken by him, it is ovidont however, that he especially distinguishod himself in the lnowledge of the heavenly bodies and their movements: "The heavenly courses are so well lonown to me as the streets of Nehardea; yet I cennot get to the bottom of the nature of the comets and their movaments; only that much I know for certain, that a comet never crosses the orion, for it that would happon, the world would be destroyed. It is an optical illusion if sometimes we see one cross it; the light ananating from the conet appears to us as boing tho star itself." Many more of his doctrines and stataments testify that he tried to explain the phonomona of the sky with a seiontific mind, and from this, it must be concluded with certainty that in astronomy, ho kept pace with his time, or even was ahead of it.

The speciel merit of Samuel was that he espeoially oultiveted the branch of practical astronomy represonting the calender science, sproading the knowledge of it in Babylon.

This branch, so important for the religious as well as civil life at that time, however, could find paractical application only in palestine, the only place where the dotermination of the beginning of the months and the intercalations were permissible. 4 In spite of this, upon the suggestion of Samuel, soon it beome the subject of eagor study with the Babylonian teachers of law.

4 Note 4, p. 19. Sonhedrin 11B, Jerusch. Nedarim VII, 8. Only in an amergenoy case those qualified abroad were allowed to make oalender determinations. The proceedings of Chanania, nophew of \mathbb{R}. Joshua, who in Babylon determined beginnings of the month and intercalary years, was soverely censurod from all sidos.

In those days, when the Patriarch had his seat still in Palestine, the determination of the beginning of the month on which also depended the festival days, always took place on that day, on which the new moon beceme visible in the sky for the first time after now moon in fom of a narrow orescent. This had to bo announced by witnesses to the Patriarch and his council, who had to be wery well experienced in the rockoning of every new moon 5,0 . the time when the moon comos in conjunction with the sum, as woll as in the lnowledge of the time whon the visibility of the moon becomes possible for the first tine after the confunction-mirstly in order to be ablo to exanine tho statements of tho witnesses and on the other hand, in ordor to avoid irregularity in the colemdar system in case the moon would have

beon seen by witnesses not at the proper time.

As soon as the bogiming of a now moon was appointed, all Jewish coununities wero infomed of it by messengerg. Those comunities, however, who were so far away from palestine that a messongor could not reach them before the bogiming of the day of festival, ramained in doubt as toothe true time of the festival and had to celebrate two days instead of one. The rules followed by the sanhedrin in all calandar deteminations, as well as the astronomical reckonings connected with it, wore trusted under the nome of Sod he-Ibbur (calendar secret) only to ordained teachers of the law. Besides, they wore recorded in short, dark sugeestions in a. Baraf tha.

Notie, p. 20: of. Kaimonidos, Jod ha-Chasakah h. Kiduusch ha-Chodosch cap, 1 and 18. Although in figuring out the time when the new moon starts to beocme visible, witnesses were completely superfluous, a traditional law wanted to see applied if possible the statements of witnesses, and allowed only in case of an emergenoy, the determination of the beginning of the month on the basis of mero calculation. But this calculation, howover, differs from the calendar rule introduood later by Hillel II, which figured the interval from one new moon to the othor according to the mean longth of the synodic month.

Note: Bezah and many others, Kethuboth 112a. The reason for kooping this information socret is given by R. Soraohjah hemlevi, maor, Rosch ha-Sohanah par. 1 and by R. Mordocai Jafah, Lebusch he-Chur S. 427.

Through his astronomical studies, Samule had now gained the necessary knowledge on the movements of the moon and could meke the statement before his colleagues that he was able to announce to the Jews in the Diaspora the beginning of the month each time as it is set in Palestine thus saving the double festival days.*

Although he was not able to unriddle the sentences fram the Baralt tha de Sod he-Tbbur on this placed before him by Abba, father of the femous Agadist R. Simiai, and had to hear of the latter the remark that life this ho does not understand much more of the Sod he-Ibbur; still he lnew how to make up a calendar for 60 years. Later he sont this to the hoad of the palestine toachers, R. jochanam, to show him his superiority**.

He did, however, never think of making public this calendar because as long as there existed in Palestine a ohief religious govermment, he did not wish to sever the only bond which still knit the Jews to their former homeland***

[^4]Nevertheless, he did not care to teach colleagues and students in the calendar soionce, and the Babylonian Jews recoived their first knowledge in this science through him. * Anong other thins, they learned of him also how to determine the duration of the solar year at 365 doys and siz hours.** Therefore, this determination of the length of the yoar, although ever before in use with the senhedrin in Palostine, carried the nome Tekufah do Mar Semuel with the Babylonian as well as later with the western Jews.***

* Hote 2, p. 22: Due to samuel's excellent lmowledge in the calendar soience which even revealed to him the secret of deternining the begimings of the month, he was given the neme Jarchine ah. (cf. Baba mezia. 856.)
** Mote 3, p. 22: Erubin 56 a.
*** Note 5 , p, 22 . Though this Telcufah even acoording to the Jovish calendar is not workec our should correspond to 235 months were $1485 / 1030$ hours in excess. But this in no wise was a secret to somuel. He merely wanted to accept a more convenient figure beoause in his time it still was fit for uso (cf. Abrahom Ibu Esra, Comentary to Ixod. 12, 2 and Iggoroth haschabbath portal). A cortain Rab Adda later divided this excess in 19 parst and deduoted one such part from the 365 days and six hours, thus roducing the length of the solar yoar to 365 days, 5 hours, 55 ע/5/342 minutes. So that 19 solar years amount to exactly the same as 235 months at 29 days 12 hours Li4 $1 / 18$ minutes. This length of the yoar is named Tekufah de Rab Adda. Yet the Telcufah de Mar Samuel was not complotely displaced by it. Some regulations with rogard to 11 thurgy still are based on it. Cf. Tur and Sohulchan aruch. Orach Chajim S. 117 and S. 229.

Position of the Passover, According to Josephus

"Again, Josephus, the most honest and most faithful writer, says that Passover was always celebrated in the month Xanthicus [Nisan, or April]. But, if we follow the Europeans, Passover was often wandering from Xanthicus, or our April, in the times of Christ. For, in the second, fourth, fifth, seventh, tenth, thir teenth, fifteenth, sixteenth, and eighteenth year of the Jewish cyole, passover was altogether falling in the month Dystrus, even our Maroh."-- Scaliger, Joseph, "De Fmendatione Temporum," p. III [Preface]. Franoofurt, 1593.

Moon Precedes Her Ancient Position in Julian Year By One Day in 304 Years

"Accordingly, the first and most ancient observation of Hyparchus connected the new moon with the equinox, even the or, in order that I may use a better word, he thought
in 304 years, he proclaimed that not only the moon, but also the equinoxes antiin 304 years, he proclaimed that not only the moon, but also the equinoxes anti-
oipated by one day their former positions in the Julian year."-- Scaliger, Joseph, "De Emendatione Tomporum," p. II [Preface]. Francofurt, 1593.

The Greek Tetraeteris

"Whence there were two principle kinds of year among the ancients, neither lunar, nor solar, but uncertain between each kind. The first form resides in Greece, the other in the Orient. But the Greeks did not in any way undertake a correction of their form. It was difficult to exact all full months, according to the plans of the moon, and yet, in certain civil ordinances, they were holding the work by the moon's motion. For always the Olympiad was celebrated on full moon, and on the 15th of the month. In order therefore, that the equal Greek year should eatoh the Olympiad on the 15th of the month, this was not difficult. But in order that the l5th of the month should fall upon the 15 th of the moon in the equal months, this could not be done unless, in every four years, a single two days were added to each year, whioh they were calling avappis η Mepas. This Tetraeteris was oalled by the Elidensians, Olympias, by the Delphians, Pythias, and its first month only was lunar."-- Scaliger, Joseph, "De Pnendatione Temporum," p. 8. Francofurt, 1593.

Nature of the Greek Year

"And certainly, those ancients erroneously set forth, and after them, writers of a later age, Macrobius and Solinus, that the Greek year was purely lunar from the beginning. For, although in their panegyrics, and better known saored festivals, which were repeating in a certain period of years, they were holding a plan of the moon, yet, let me say in a word, the form of their year was not lunar. For the olympio game was celebrated on the full moon itself. Besides, the Laconians had a law to begin something new before full moon, or before new moon. And whence we have mentioned the Laconian moons, repeatedly set forth in a common proverb, and, on the contrary, that the interposition of the law was scorned by the Arcadians in a proverbial shout. For since frequently before new moon and full moon wars and other business were arising, on account of this thing, they were oalling it 'mporehivous,' or, before the new moon, although we know that the cause of the shout was mollified in interpretation by the Arcadians themselves, and by those reporting that the shame had been changed into praise, according to the age of its origin, and by those constantly discussing their anoestry from a more anoient star. Beoause, therefore, they were choosing the times of new moon and full moon for their sacred panegyrics, oonsequently, the holy festivals were appointed every three years, of which kind were the orgies of Bacohus, the greater Mysteries -- the Nemean and Isthmian games. For this is the form of the Greek year. If, for example, the new moon occurs on the Kalends of Gamelion, the full moon will fall upon the same Kalends in the third returning year. Therefore, since, in the Attio Tetraeteride, two greater mysteries were being celebrated, which were repeating in the third year, these were re ourring upon that position of the moon, which was opposite to the site of the former Mysteries."--Scaliger, "De Bmendatione Temporum," Preface, p. 6.

The Great Period of Hipparchus
"For the great period of Hipparchus is 304 years. Its first year agrees with the Nabonassar year 586, according to the limit of the passing year, in whioh Hipparchus noted the equinox on the thirtieth day of Mesore, third day of the week, the fourth following at sunset, in the year 17 of the third Calippic period, year 4552 of the great Julian period, oycle of the sun 16 , September 27. It was the year of the Jewish period, 3600, as the Europaean Jews reckon, Tisri 4.2.6. in the same night."-~Soaliger, "De Bmendatione Temporum," preface, p. 7.

Desoription of the End of Passion Week

"For Christ, without any controversy, ate the Passover at the end of the thirteenth of Nisan, the fourteenth being imminent: that is, in the evening, whioh the fourteenth followed. Concerning this, no one a little erudite doubts. For after sunset of the fifth day, the sixth Jewish day of the week was entering, even to sunset of the day of Venus, after which the Sabbath came in, and the 15 th of Nisan, that is, the solemn Paschal; therefore the whole 14th of Nisan intervened between the end of the Lord's supper and the beginning of the solemn Paschal. Yet the Evangelists call that day on which He ate the Passover, the 'first day of unleavened bread,' although it was only the thirteenth."--Soaliger, "De Emendatione Temporum," Preface, p. 8.

Beginning of Jewi sh New Moon Days

"But the Jewish, Arabic, and Samaritan new moons commonly exceed the size of the phasis, so that the oivil new moons of the lunar months are of a three-fold kind: the Attic from the conjunction, the Calippic, from the waning of the moon, and the Jewish, Samaritan, and Arabic, from the shape of the moon on the third day. I say. The solar month is natural, which is limited by the natural segsign. These and the lunar are the true celestial months. The oivil month of the sun is that which has been divided, not by a natural length, but equally: as, in the Egyptian year, and Greek, all the months are equally 30 days in length : and in the lunar, alternately full and hollow. For the computations of the moon $\frac{\text { do }}{}$ not always suffer that the months should be continually hollow and full in alteration, but this has been established according to the method of civil time. There are also some months produced by the superfluity of days, which are called embolismic: and these are either natural or civil: but both are ruled according to the equation of the sun. The natural are embolismic, whioh, collected from the excess of the sun in comparison with the distanees of the moon to be completed, are brought together, of which kind is the Jewish and Samaritan Adar prior; and this month is always thirty days long. The oivil embolismio, which, arising from an excess of Solar days, is added for the support of a hollow year. of this kind was Mercedonius of the ancient Roman year, alternately twenty-two, likewise twenty-three days. Of this kind also is the Attic Posideon. For neith er could Posideon, be natural, although thirty days in length, since it was indeed not lunar, sinee its neomenia was a long way off from the moon; and not solar, because it was a part of that year not described according to the course of
"For he claims that the Jews begin the new moon dey, not from the conjunction of the luminaries, but from the horned form, that is, on the third dey after the conjunotion."--Fetavius Dionysius, "Animadversiones in Epiphanii opus," p. 177.

let me

"I would not have said this, nor adefine that in that time the political translation of the more recent Computation was employed by the encient Jews in the time of Christ. For this even the Jews themselves deny. Since Rabbi Moses ben Maimuni Cap. VII Kiddusch hahodesch, sec. 7 \& 8, thinks that the rejection of days of the week was given birth in that time when they began to direct their computation according to the mean motions, the true having been set aside."-- Petavius, p. 182.
"But why is it that by this plan of computation [constant Jewish] we never appoint the calends of Tisri either on the first dey of the week, or on the fourth, or on the sixth? Without doubt because this computation is governed, as we have reported above, not according to the exact conjunction of the sun and moon, but aocording to the mean. Whence it happens that on alternate days of the nascent moon the calends are celebrated and postponed so that sometimes they ocour upon the exact conjunotion itself of the sun and moon."-Maimonides, Moses, "De Sacrifloiis Liber, " p. 374. Tr. Ludovicus de Compiegne de Veil. Published London, 1683.

The following should continue from the foregoing:

"For this is their plan and manner when they are celebrated at the same time with the nascent moon on the third day of the week, they would be rejected on the fourth, and celebrated on the fifth; they would be rejected on the sirth, and observed on the Sabbath, or seventh dey; they would be rejected on the first, and celebrated on the second."--Reference as above.
"But that with the exception even of the four it happens that the calends of Tisri are postponed, the cause is altogether the same that todey s plan of reckoning is referred to the mean conjunotion of the sun and moon. And this is regarded to be the true when, the new moon falling upon the third night of the week, the calends of Tisri are thrown upon the fifth day: for often it happens that the new moon does not yet appear on the fifth night of the week, nor indeed upon the sixth. From which it is easily understood that the exact conjunotion of sun and moon is not accomplished except at length on the fifth day of the week." - -Idem.
"Again, by this plan of the tables, the months are thus disposed full and hollow, so that Tisri is continuously full, and Tebet, always hollow. But those who follow this through, ohange in order. Tebet is hollow, Shebat full, Adar hollow, Nisan full, Ijar hollow, Sivan full, Tammur hollow, Ab full, Elul hollowo But in the intercalary year, since there are numbered two Adars, the first of these is full, the second, hoilowe"-maimonides, Moses, "De Sacrificils Liber," p. 376 . Tr. Compiegne de Veil. Pub. London, 1683.
there is
"But this plen of the fasti, which is now in use, although no senate which rules the times according to the motions of the stars, even boys from pley learn in three or four deys."--Maimonides, Moses, "De Sacrificiis Liber," p. 385 . Tr. Compeigne de Veil. Pub. London, 1683.
"But it is fitting to have in mind that which is known and recognized why that meon motion of the sun renges through on interval of twenty-nine doys, why over three hundred and fifty-four days by which that lunar year is accomplished, whose months have been disposed in order, which thus far is called the ordered year. For he who would rightly know these mean courses, would easily perceive those plans by which it is clearly known when the new moon would show herself. For from that night of the month in which the new moon first appears to that night of the next month in which the new moon appears again, twenty-nine whole days intervene.
"And neither does it ever happen that more or less whole days intervene. But this is the only thing which we seek by these plens, when, plainly, the nascent moon first appears. Then, from this year in which a certain new moon should ap-actually poar eweo, oven until in the returning year the same new moon appears, the time, which we have called the ordained year, will wholly pass awey, or by one day more."Maimonides, Moses, "De Sacrifiofis Liber," po 390. Tr. Compiegne de Veil. London, 1683. And the same is the plan of all the

Rosh Hashanah 21 a: "When you see the Tekoufa de Tebeth (the winter solstice) is prolonged until 16 Nisan, pronounce this year, without hesitation, as embolismic because it is said (Deut. 16:1): 'Observe the month Abib,' which means observe whether the Tekoufa of Abib falls in the month Nisan."-- Cited by Sidersky, David, "Etude sur 1'origine astronoraique de la ohronologie juive," Appendix, sece VII.
"From numerous passages of the Mishnah, the Babylonian and Jerushalmi Talmud, it is evident that prior to the destruction of Jerusalem in 70 A. D., no day of the week was exoluded from the calendar for the fixation of the lst of Tisri. The Mishnah (Sabbath 19.5) speaks of the lst Tisri falling on a Sunday, and another Mishnah (Menachot 11.7), deals with the Day of Atonement falling on a Friday [or the 1st and 15th of Nisan and lst Tisri on a Wednesday]. The Jerushalmi (Rosh hashanah 2.1) deals with the lst Tisri falling on a Fridey. (For the details, see Zuckermenn, "Materialien," etc. pp. 49, 50, 60. Breslau, 1882.) [Thus, when the lst Tisri was on Sunday, then the lst Nisen was Friday, contrary to Adu; and when the 1st Tisri was on Monday, then the 1st Nisan was Sabbath, and the 14th Nisan, Fridey, contrary to Badu.] Sidersky, David, "Etude sur 1 'origine astronomique de la ohronologie juive," Appendix, sec. VIII.
"The Talmud passes over Hillel's reform with silence, and does not mention with one word the great difference between our present and the former celendar." ${ }^{\text {n }}$ Schwarz, Adolf, "The Jewish Calendar," p. 37.
"Piniles claims that the fact that the calendar and its principles are not mentioned in the Talmud is explained by the circunstance that our ancients who regulated the calendar 34 years after the Nicaean council saw to it that no stranger and outsider should be initiated into its principles."--Sohwarz, Adole, "The Jewish Calendar," p. 42.
"The founders of the calendar thought that they ought to retain the previous seerecy, in order to protect the declared advantage Judaism had over Christianity as a result of the regulated order of the festivals (Note 3)." -mSohwarz, Adolf, "The Jewish Calendar," p. 42.
"The order of intercalation of our oyole deviates from that of Meton, which is archaic -- cannot be accidental."--Sohwarz, Adolf, "The Jewish Calendar," p. 43.
"In Erachin 9.b, Rabbi Adda bar Ahaba expresses the bold view that the calendar need not absolutely be based upon observation (Note 1)."-schwarz, Adolf, "The Jewish Calendar," p. 43.
"Already Maimonides seems to have been of the opinion that our calendar is not established on the Jerusalem meridian. For if you oompute the astronomical conjunction with the help of the epooh stated in Kid. hach. c. 11 ff., you will find that already in Maimonides' time it was $1^{h} 17^{m}$ before the Molad. This difference, not mentioned with one word by Maimonides, he could explain to himself only by the ohange of the meridianke"--Sohwarz, Adolf, "The Jewish Calendar," p. 40 Note 1.

> "The mean principles of the calendar based on Samuel's tekupha have been borrowed from the Almagest -o both the average length of the month, and the epochs of our Moledoth and the Tekuphoth are nothing more than data taken from the Ptolemaean astronomioal tables reduced to the meridian of Jerusalem." Jewish Calendar," po 40 "To be sure, the form of the year is not expressly given anywhere, yet in spite "The of this it is an established faet that Moses introduced the limits of the lunar year. The oircumstance that the feasts of the Israelites had to agree with the seasons of the year makes this an unshakable evidence. With a vague lunar year, the Passah feast, which comes in the month of ears, as well as the harvest feast, which cames in the autumn month, would make the round through all seasons of the year."-Sohwarz, Adolf, "The Jewish Calendar," p. 20.
"For therefore Kisleu, which is full by nature, may, by arrangement, become hollow; or, by nature, for the reason that in the 19th year of the paschal oycle, Dionysius cut off one day, which he called the "leap" of the moon, but which the Greek computers called the "cutting off" of the moon, although it foolishly constitutes the last year of the 19-year oycle as only 353 days, when there is no such year in nature." -- Scaliger, Joseph, "De Emendatione Temporm," p. 10. Francofurt, 1593.

How the Jews Count and Date Their Day

"Furthermore, it must be understood that when I say that Tisri begins from the loth of October, I mean from the night which followed sunset of the 9 th day, from which sunset the Jews count the beginning of the loth. Thus, the evening of the sixth day itself is the beginning of the Sabbath. When, therefore, I speak of the beginning of the Sabbath, I mean sunset of the day of Venus."-- Scaliger, Joseph, "De Emendatione Temporum," p. 85. Francofurt, 1593.

Relation of Moon's Motion to the Tropical and Julian Suns

Abstract

"For the tropical [astronomica.]] 19-year cyole is faster than that of the moon by more than two hours. On the contrary, the Julian 19-year cycle is longer than the moon's by one hour, and more than 27 soruples. But since in each plan, tropical and Julian, there is error, the moon, with plans midway between those two, cannot regard the limits of her epoch, so that in the paschal cycle of Dionysius it happens -- whose plans are not assembled with reference to the moon's 19-year cyole, nor its, epoch correoted according to the motion of the sun, but its form rather wholly a pure Calippic -- that after 300 years it is neccessary to vary its position."-- Soaliger, Joseph, "De Fnendatione Temporvm," p. 12. Francofurt, 1593.

Jews Said to Use Chaldean Year in Their Contracts

"To the king of Egypt, Jehoiakim, king of the Jews, was paying taxes. But he ohanged lords, and became subject to tribute to Nabopollassar, upon whose death, he revolted from the Chaldeans in the fourth year of his reign, which is the first of Nebuchadnezzar. And again, he that is conquered by Nebuchadnezzar, comes under his power. From those times, I say, they began to use the Chaldean year in their contracts, and therefore, from the beginning of Nabopollassar, which arose from the 123 r d year of $\mathrm{Nabonassar}, \mathrm{4th} \mathrm{cyole} \mathrm{of} \mathrm{the} \mathrm{moon}$, learned from Ptolemy."-- Scaliger, Joseph, "De Emendatione Temporum," p. 79. Francofurt, 1593.

Jews Used Chaldean Months in Their Contracts to Time of Seleuous Nicanor

[^5]Aftdr the death of Herod the Great, at the time Archelaus was about to take over the kihgdom of Syria, a great sedition arose among the Jews because of Herod's killing of Matthias, and the appointment of another high priest, "not agreeable to the law." At the time of the passover, the Jews had worked themselves into a frensy. It was a time, Josephus says "when they offer sacrifices with great alacrity; and when they are required to slay more sacrifices in number than at any other festival, and when an innumerable multitude came thither out of the country, ney, from beyond its limits also, in order to worship God."

One company of the seditious resorted to the temple, and Archelaus sent a regiment of a thousand to quell the disturbence before "the whole multitude should be infected with like madness." But the seditious in the temple "irritated the people by the noise and clamors to encourage the people in their designs, so they made an assault upon the soldiers," stoned them, and then "returned to the sacrifices which were already in their hends."

Archelaus then thought to cut off those who had made an attempt against the govermment, and sent out the "whole army upon them" -- the horsemen to prevent those that had their tents without the temple, from assisting those that were within the temple. Josephus, "Antiquities," bk. XVII, ch. IX, see. 3. Whiston, 1844.

The seditious also from within the temple threw stones at the force which Archelaus sent. "At these the whole multitude were irritated, and threw stones at many of the soldiers and killed them," but the tribune fled away wounded. "After which they betook themselves to their sacrifices, as if they had done no mischief." So Archelaus sent his whole army upon them, "the footment into the city, and the horsement men by way of the plain, who, falling upon them on a sudden, as they were offering their sacrifices, destroyed about three thousand of theme" Josephus, "Wars of the Jews," bk. II, ch. II, sec. 3 .

From these two sources, it seems quite clear that the greatest part of the multitude were "in the plain" offering their sacrifices when the horsemen whom. Archelaus sent, came upon them and killed about three thousand. This scene took place about the time Jesus was born. This testimony of Josephus, together with that of Philo ("Life of Moses," Book III, pp. 121, 171, 284) and Maimonides ("De Saorificiis Liber," p. 4) are important sources favoring "individual paschal sacrifices upon private altars," in the time of Christ.
"That not 10 or 11 days were inserted after each year can be concluded for the simple reason that by it the character of the lunar month would be annulled."Schwarz, Adolf, "The Jewish Calendar," p. 9, Note 1.
"It appears however, from 1 Sam. 20:27, that already in the most ancient time, as often as on the evening of the 30th dey no moon was visible, two days were celebrated as new moon feast, so that as with us, between two new moons there were always 28 days."--Schwarz, Adolf, "The Jewish Calendar," p. 10.
"Gatterer, in his zeal, goes too far (1. c. 145) when he asserts that the Jewish months at all times had 29 and 30 days alternately, for since the visibility of the new moon depends on the position of the ecliptic as against the horizon, it cennot be determined in advance that one or the other month shall be full or deficient. It is just as possible to have two full months follow each other as for two deficient." Schwarz, Adolf, "The Jewish Calendar," p. 10, Note 2.
"In the Mishnah several cases are mentioned which do not fit into the present
holiday regulation of the Jowish calendar.
Pesachin 7.10 -- the Mishnah gives rules about the passover lemb: "The bones and the sinews and the leftovers are burned on the 16 th Nisan. If this happens to be on a Sabbath, then they are burned on the 17 th beoause they do not take precedence over a Sabbath or a holidey." Here it is taken for granted that the 16th Nisan could happen on a Sabbath and therefore, the 15 th, contrary to the Badu rule, on a Friday.

In the controversy between the Pharisees with the Boethosaer about the Pentecost time, which we are going to discuss later, the fact that the 16 th Nisan came on a Sabbath, therefore the 15 th on a Friday, played an important role.

The Babylonish Gemara (Sulcka 54-b) says: 'If the first day of the feast of the tabernacles coincides with the day of preparation for the Sabbath, the Day of Atonemont would have to come on a Sundey; that is why it is shifted.' (By lengthening the preceding month Elul to 30 days.) In another place, the Talmud reports (Rosch Haschana 20 a): 'When Ulla came, he told that in Palestine one had made the month of Elul to be a full month (30 days). Then he said:'the assooiates in Babylon recognize the servioe that has been rendered theri by this. Therefore, at the time of Ulla ($300 \mathrm{~A}_{*} \mathrm{D}_{\bullet}$), the calendar rules had not definitely been laid dowm." - "The 14th Nisan, and the Day of the Crucifixion and the Synopties." Biblica,

[^6]"In the Jerusalem Gemara on the pamphlet Sukke 4.1 (2), Rabbi Simon (3rd cent. A. D.) orders the calendar makers to see to it that the ceremony of the willow twigs (7 th dey of the feast of tabernacles) does not come on a Sabbath. Before that, it had been insisted that the willow twigs took precedence over the Sabbath, that is, the ceremony could be performed on Sabbath, but the Boethosaens contradicted this (4). The Adu rogulation ended this controversy. "and the Day of the Crucifixion and the Synoptistes, " Biblioa,
"It has been proven by the Karaite Eliah Hadassi (Eschkol hakofer sec. 185), and by Asarjah de Rossi (Mazref lekesef p_{0} 69) that in the biblioal epooh the Dechijoth [postponements] were not known."--Schwark, Adolf, p. 38. [In Ezra 7:9, the people are said to have arrived in Jerusalem on the first of Ab ; they "abode there three deys," and then an "the fourth dey," not the fourth dey of the month, as de Rossi takes it, but the fourth dey after the arrival, the priests weighed out the silver and the gold, and tumed it orsr. This was Sunday, not Sabbath, and signifies that Ezra left Babyl on on Thursdey, and Ahava on Mondey. This is contrary to de Rossi, who argues that I Nisen oould not have been Thursday.]
(Names and Order in Josephus and Machabees)
" Table of the Jewish Months
In Josephus and others, with the Syro-Macedonian names Josephus gives them, and the names of the Julian or Roman Months Corresponding to them.

Hebrew Names.

Syro-Macedonian Names.
(Idrntical)
Xanthicus March and April
Artemisius
Daesius
Panemus
Lous
Gorpiaeus
Hyperberetaeus
Dius
Apellaeus
Audynaeus
Peritius
Dystrus
intercalated.

Roman Names. April and May
May and June
June and July July and August August and September September and October October and November November and December December and January January and February February and March

1. Abib or Nisan (Esther 3:7)
"In the month of Xanthicus, which is by us called Nisan, and is the beginning of our year, on the fourteenth day of the lunar month, when the sun is in Aries (for in this month it was that we were delivered from bondage under the Egyptians), the law ordained that we should every year slay that sacrifice which I before told you we slew when we came out of Egypt, and which was called the Passover; and so we do celebrate this passover in companies, leaving nothing of what we sacrifice until the day following. . . . But on the second day of unleavened bread, which is the sixteenth day of the month, they first partake of the fruits of the earth, for before that day they do not touch them. And while they suppose it proper to honour God, from whom they obtain this plentiful provision, in the first place, they offer the first-fruits of their barley."-Ant. 111.10.5
"But Moses appointed that Nisan, which is the same with Xanthicus, should be the first month for their festivals, because he brought them out of Egypt in that month: so that this month began the year as to all the solemnities they observed to the honour of God, although he preserved the original order of the months as to selling and buying, and other ordinary affairs."--Ant. 1.3 .3
"We grant therefore a safe conduct to all that come and go, until the thirtieth day of the month of Xanthicus. Fare ye well. In the year one hundred and forty-eight, the fifteenth day of the month of Xanthicus. "--2 Mac. 11:30,38.
2. Ziv, or Iyar (1 Kings 6:1)
"Solomon began to build the temple in the fourth year of his reign, on the second month, which the Macedonians call Artemisus, and the Hebrews Jur." --Ant. viii. 3.1
3. Sivan (Esther 8:9)
4. Tammuz (Eze 8:14)
5. Ab
6. Elul (Neh. 6:15)
7. Ethanim, or Tisri (1 Kings 8:2)
"It was the seventh month before they came together; which month is, by our countrymen, called Thisri; but by the Macedonians Hyperberetaeus. The Feast of Tabernacles happened to fall at the same time, which was kept by the Hebrews as a most holy and most eminent feast. So they carried the ark and the tabernacle which Moses had pitched, and all the vessels that were for ministration to the sacrifices of God, and removed them to the temple. "--Ant. viii.4.1
"But on the seventh month, which the Macedonians call Hyperberetaeus, they make an addition to those already mentioned, and sacrifice a bull, a ram, and seven lambs, and a kid of the goats, for sins.
"On the tenth day of the same lunar month, they fast till the evening; and this day they sacrifice a bull, and two rams, and seven lambs, and a kid of the goats, for sins. And besides these, they bring two kids of the goats; the one of which is sent alive out of the limits of the camp into the wilderness for the scape goat, and to be an expiation for the sins of the whole multitude." - -Ant. 111.10.2,3
8. Bul, or Marchesvan (1 Kings 6:38)
"This calamity happened in the six hundredth year of Noah's government [age], in the second month, called by the Macedonians Dius, but by the Hebrews Marchesuan; for so did they order their year in Egypt."--Ant. I. 3.3
9. Chisleu (Zech. 7:1)
"Now it came to pass, after two years, in the hundred and forty-fifth year, on the twenty-fifth day of that month which is by us called Chasleu, and by the Macedonians Appeleus, in the hundred and fifty-third olympiad, that the king came up to Jerusalem. " - -Ant. X11.5.4
10. Tebet (Esther 2:16)
"On the twentieth day of the ninth month, which, according to the Hebrews, is called Tebeth, and according to the Macedonians, Applleius. "--Ant. xl.5.4
11. Shebat (Zech. 1:7)
"In the year one hundred and seventy-seven, the eleventh month: the same is the month Sabatly. "--1 Mac, xvi. 14
12. Adar (Esther 3:7)
"Now Moses lived in all one hundred and twenty years; a third part of which time, abating one month, he was the people's ruler; and he died on the last month of the year, which is called by the Macedonians Dystrus, but by us Adar, on the first day of the month."--Ant. 14.8.49.
"But to celebrate the thirteenth day of the month of Adar, called, in the Syrian language, the day before Mardochias, day."-2 Mac. 15:37.
13. Veadar (13th month)
"Fare ye well. In the year one hundred and forty-eight, the four and twentieth day of the month of Dioscorus." -2 Mac. 11:21.

INSTANCES OF SHORT TRANSLATIOIT PERIODS

(Citations from Astronomical Authorities)

1. "If the conjunction happens in the signs of short settings, such as are Virgo, Libra, Scorpius, in which the new moon holds around the autumnal equinox, or turns about around the Austral border, and advances in slow motion in Apogee, the first phasis or appearance of the moon can be retarded so that the moon is first seen in the evening after the lapse of some days after the interlunary period. Therefore, when the three causes before named, meet together around the conjunction of the sun and moon, it can altogether happen that the first phasis of the moon can be noticed not only on the subsequent day after the new moon (conjunction), but also in the evening, on the very day itself in which the syzygy of the sun and moon happens before the meridian; even as Erasmus Reinholdus in the comnentary on the Theories of Purbachius, p. 155 demonstrated this. Indeed, from the same principles it follows that it may be allowed to see the newest and first moon on one day especially in the short twilights existing about spring time, namely which can advance this appearance of the moon not a little."--Hevelius, Johannes, "Selenographia," Gedandium, 1647, p. 274.
2. "Likewi se Franciscus (Patritius, book 20, Pancosm, p. 114, similarly reports an example concerning Vespucius, who observed on one and the same day, the old and new moon, when he spurred on beyond the equator, where he also subjoins these words: 'but this could not otherwise be seen than in clear air, as with us, and one free from clouds.' This I freely concede, and believe to be true." --Fevelius, "Selenographia," P. 275.
3. The visibility of the nev light, that is, the necessary age of the orescent, depends:

On the geographical latitude of the observer on the earth;
On the season of the year; also on the sun length (distance of the sun from the vernal point of the ecliptic);

On the geocentric latitude of the moon;
On the average irregularity (g) of the moon in its course.
Therefore the determination of the new light was one of the most complicated things in ancient astronomy because all four quantities always work together so the new light is a function of the four variable quantities. Fortunately we can eliminate here two quantities, that is, the georraphical latitude which is not variable but the constant in Jerusalem $=\quad 31.8^{\circ}$; also the sun length is constant - since it concerns merely the new lights of March and April - the sun length $=350^{\circ}$ until about 15°.

Thus the visibility depends only on two factors:

1. On the geocentric latitude of the moon which determines how many degrees she stands above (+) or below (-) the ecliptic.
2. On the average irregularity (g) of the moon which determines at which point of the ellipse formed course of the moon around the earth she stands. If "g" is at about 0°, then she is in the perigee and moves very quickly to the left or east away from the sun; if " $g^{\prime \prime}$ is at about 180°, then she is in the apogee and moves very slowly.

How we have two simple astronomical rules:

1. If, as here, in the spring the latitude of the moon () = + 5°, perigee $=$ "g" at 0°; then the orescent can be visible in Jerusalem after 17 hours. Example: The new light on Narch 13, 1918, mentioned by Gerhardt on page 121, which was visible in Syria after 20 hours, There it would have been visible as early as after 17 hours. In Germany I have observed it, latitude 51°, after 22 hours. Here most favorable conditions prevail. Latitude $=+5^{\circ}$. (3)
2. If, as here, in the spring the latitude equals - 5, "g" at 180°, then the cresceat is visible after 23.4 hours at the earliest. Example: The new light of the year 30 A. D. becane visible not on March 23 but only iliarch 24 , b cause only 21.6 hours had actually passed.

It is esnecially worthy of note that in the spring the necessary age depends much more on the average irregularity of the moon, " g ", than on her geocentric latitude; that is, it is much more important that the moon is distancing itself as quickly as possible from the sum so as to reach a certain elongation. The latter she reaches at the perigee in $17 \mathrm{l} / 2$ hours; at the apogee, however, only in 23 hours. Contrary to this, in the spring a great positive latitude is less important, for then the ecliptic is already so suddenly arising in the evening against the horizon that the positive latitude only slightly inoreases the heighth of the moon above the horizon. (In the fall, August-September), on the contrary, the latitude is so important that a negative latitude of -5° raises the necessary age of the new light to about 41 hours.) --Schoch, Karl, "The Crucifixion of Christ on 14 Nisan," Biblica, Jau. 31, 1928, pp. 49,50.
4. The parchments of the 5th century B. C. , found in Assuan, contain Jewish dates of months, which Ginzel has examined. In two cases, the new light had appeared after 24 hours. In two other eases, aiter less time. Ginzel succeeded in making a similar find from three equations of dates in Ptolomaus' Almagest. The new light had appetred after 22 hours. --ipping found in texts in ouneiform characters an interval of 19 and 18.8 hours.--In the months of February, March, April and liay, 1918, I had my oldest sons and their fellow-soldiers carry out a number of observations in Horthern Pal estine, Syria and ITorthern Arabia. The result was that in 23 successful cases, the crescent was seen $291 / 327,26$ and on Miarch 23, as early as 20 hours after the conjunction. This latter result was reported to me by three observers of Aleppo and vicinity. On Liar ch 22, 1938 in the territory of the Carmel and zear Kubebe-Emaus, the six observers saw the new light when the moon was 19.1 hours old. (Biblica, 1928). J.K. Fotheringham published (in Observatory, Oct. 1921), the results of 14 places of observation--14.5--26.1 hours interval. The first (14.5) from Equatorial territories-mSir G.B. Airy figured out the minimum for Jerusalem 18 hours (See Observatory, 1911). This was confirmed by Dr. Downing. Ideler, Wimm, Wieseler, Caspan, and Ginzel take 36 hours as the maximum. --Gerhardt, Oswald, "Astromische Nachrichten,". Band 240,唯, 150,151.

Instances of Short Translation Periods--3.

THE KARAITE RULJS POR TRATSLATION

5. After determining the true new moon (conjunction) and the hour of sunset for the day of the new moon, in case the age of the moon as from new moon to the hour of sunset is between 8 and 22 hours then the 1 st (of the inonth?) cannot be determined by the age of the new moon because at the age of this many hours the moon can or can not be seon on the first evening. Therefore, in such a case they must resor \vec{t} to another mothod of determining, i. e., first of all from the tables it must be figured out (1) the degree of the distance between the moon and the sun to the east at the moment of sunset on the first evening; (2) It is necessary to determine the degree of the height above the horizon the moou will be at the moment of sunset, and further whether the total of the moon's distance from the sun and the moon's height above the horizon together amounts to 13 degrees, then the first of the month is reckoned from the first evening of the new moon (conjunction) but in case the total is less than 13 degrees, then the first is postponed until the following evening.

After determining the true new moon and the hour of suaset for the day of new moon (conjunction) in case the age of the moon as from the new moon until the hour of sunset is over 22 hours, then the first of the month always is counted the first evening - on the grounds that the moon at an age of over 22 hours from the new moon (conjunction) receives a great share of its light from the sun, so that it can be seen even simultaneously with the sun on the horizon at sunset on the first evening.

The foregoing is the main basis or the Karaite calendar. As is ovident from this, the determining of the months of the Karaite calendar represents a colossal task. Besides, there is this inconvenience that the moon which will show herself the first night aftor new moon in the Grimea, cannot appear the same evening everywhere, therefore not all Karaite scientists share the opinion of determining the months of the calendar by this method. Thus in tho near future is to be expeoted a simplified Karaite calendar in the sense that out of three rules only one will be made, i.e., the first of the month will alweys be the first evening following the true new moon, for much already has been written about this in the past and present centuries and until 1780 (Christian era) the Karaites used still another method to determine the months of the Karaite calendar. --Kokisoff, Jehuda, "Erief Information on the Karaite Cal endar," 1880, pp. 38-40.
"-dewring the greervonshif of Feakī, who suceceded Felic about - 60"- Cambiriqe Ancient 14 lō̃, Voe, X, p.854.

Cenhits Qachs 1.1,368 ff
Felix 11182
Fesloo 111183-187,196.

Sastly, the rebáct from Qualotirs, given'in Enseb, |dist. ecel. VII. 32.1718 , is acenfied nvith the Passover, vhich io eilebrated, when both the sur and hoore are in the equinot, viz. The sur in the verual, and the moon apposite him in the autumnid equireot. Just this fragment shons, that Aristobuhes by mo Eeplaining avay the tect of the Pentatench phesphieally really, gave a descinptiad and Eeplanaline of the Wosaive law. "- Sehiirer, Enil, "Lhe Lewish People in the Tame of ehrist,". Div, IIn, 'p241.

Ahrst Comeil of Nicaca
Canon 7 ?
sext. S?
bish. Since enston and ancient Liadition show that the Faoe firfecdewee, wietiont, hambert to be houser, he shace tring ing on the righ bto the melrafpolis. (Dehroeder,) \&. J. Sehroider, "Liscifelivary Beereeo the Qemeral Comueilo," p, 33. St. Lonis, 1987.
 then in their honses for monctis at a Line." - Farrar, F.W, "Sives of the Fattiers," p.2. Sondon, 1907.

Intercalation

But an alternation of full and hollow months sometimes varies: and this may be either natural or civil. The natural variety is set on foot on account of the embolism, either of the month or the day. For in each kind, two months are continued full. As in the Jewish year, when the month Adar is intercalated then Shebat and Adar embolismic are both full. . The civil variety happens only in the Jewish year by increasing the month Marchesvan one day: and Marches van, from hollow, becomes full. Again also, in the embolism of months, there is a difference in position and time. In position, if either in the middle or the end intercalation happens, as in the Attio year, the last month was intercolated, which was called Posideon the first. In Jewry, the sixth month [as counted fro isri] is intercalated, and is called Adar the first. In the Chaldaic and Syroreek year, the embolismic month was a leaper, which was running through all the months of the year in 228 years, which equal 1219 -year oyoles. The Chaldaic mbolismic month is called Theboch, by the Maoedonians, Diosourus, which interce lation, in memory of our ancestors, the Cilician Turks wore using, until they egan to substitute the simple Mohammedan year of the Hegira."--Scaliger, "D anendatione Temporum," p. 9.

Roman Intercalation

"But in the ancient Roman year, the position of the embolism was far differe ent from the others; for this was not thrown in between two months, as otherwise was the oustom: but into the month itself, just as the young sprout wascut in-解 uary, it was being inserted, and indeed not without cause. For this they were always observing that the month next to Maroh should always consist of 28 days and it was the ordinary February: but the interval between the end of January and the Kalends of February was counted to Mercedonius, and the Kalends of the common February were occurring in an embolismic year now in Regi-fugium [24th of February] and now upon the Terminalia [23rd of February]. But indeed it was not always intercalated between the Terminalia and the Regi-fugium, as Censori 28 days, now 29 days."--Soaliger, "De Emendatione Terruary would have been now 8 days, now 29 days."--Scaliger, "De Fmendatione Temporum," p. 9.

Plan of the Greek Year

"Not only recent men have written, but I think it has been found that not few of the ancients have reported the same in their literature that the Greek year of antiquity was lunar, since there was no other description of times and months in Greece than that which would agree with the computations of the moon all of which the plan of the Tetraeteride as discussed by us in the last book proves that they think falsely. Furthermore, from our same argument, it suffi ciently remains that the natural beginning of the year was not wont to be led off from Hecatombaeon, but from Gamelion and the days of winter. Therefore, long as the Atheniens had Gamelion as the month of first rank for the beginnin of the times and the acts of business, then always, for electing macistrates, the Comitia were driving back upon the end of Posideon, where there were the days without head, which were outside of the series of the thirty days, so thet the year not only should be 360 days beause of the 30 -day months, but also 362 days, on account of those additional days beyond measure which were called the "days without head," since, throughout that two days, all the magistrates of the past year had abdicated, and besides, because in them, the Comitia for eleating the new magistrates was held, even the apxalpecial, they were being called. And this was indeed called the two days for electing magistrates, until the Astronomers of those times published the form of lunar year. Then the common people began to establish the beginning of the year, in place of winter, as the soltioe in place of Gamelion, Heatombaeon: in place of the periods, in which severally the Comitia three each were being conducted, which they were calling the appoint ed assemblies, lunar months; and in place of whole months, alternately hollow were begun to be used. ${ }^{n}-$-Scaliger, "De Emendatione Temporum," p. 48.

The Octaeteris

"Besides, if, for example, we should reduce the Jewish cyoles into 19 octaet erides, indeed, the first year of the first and second octaeterides will begin from Tisri, but the now moon of Marchesvan will be the beginning of all the rest. ance cycle there are nineteen years, only that one octateris consists of three embolisms which is included from the beginning of the first year to the end of the eighth. The following octaeteris, from the beginning of the ninth to the end, is provided with only two embolisms. Again, from the beginning of the 17 th to the end of the 5 th year of the following oycle, the ootaeteris has only two embolisms. But if the third should be directed to the sight, like the ttic octaeteris, for Tisri, as we have said, Marchesvan will begin the year."Soaliger, "De Fmendatione Temporum," p. 52.

Jews Beran From the Horned Moon

"The new moon of the first Calippic Hecatombaeon began on the thirtieth day of the Jewish month Sivan, since the Jews not only begin from the phasis, but also from the horned moon. This was the running Jewish year 3430; Tisri was 5.5.927, fifth day of the week. Therefore the tenth month began also on the fifth day of the week, since Calippus antedated that Hecatombaeon by one day, because, as I have said, the Calippic new moons were from the "waning of the moon, not from the horned moon; and the Calippic new moons were midway between the ancient Attic and Jewish."--Scaliger, "De Emendatione Temporum," p. 71.

Beginning of the Jewish Year

"The manifest oausion of this beginning must be sought even from nature. Accordingly, by the, plan of the moon, Tisri is first; but, by the plan of the sun, Nisan. Wherefore, from Tisri are the lunar epilogues, from Nisan, the bisextile, Chaldaic as also civil day, that is, from the entering night, whence the reckoning of the new moons was defective, since the beginning of the night for the time of year is sometimes one way, sometimes another. But Calippus first of all began the lunar epilogues from noon, but the civil day, from the entering night. So were the Chaldaeans doing. Whensoever the reckoning arrived at the 18th hour, the night was complete and astronomically, the day of the week had to be transferred to the following since the lunar caloulation pertains to hours reckoned from noon, the civil day according to those which are counted from the beginning night to the rising of the sun. Wherefore, between the beginning of noon and night is an interval a quarter of a day, which is added to the computations of the moon, in order that the day of the week may not begin from noon, but from night."--Scaliger, "De Fmendatione Temporum," p. 76.

The Horned Moon

""But it does not seem so for two reasons, first, since they [the Chaldaeans] already had another cycle, and were using the lunar year for some centuries before Calippus; and second, because their new moons were not the same as the Calipic. For hey were boginning from the horned noon, all the oriental nations of antiquity, even today."--Scaliger, "De Fmendatione Temporum," p. 77

Passover Limits

In like manner the earliest passover today is on the 3rd of April; but in the times of the Messiah it was occurring upon the eighth, in the first Dionysian yay in the time of the Messia lat Jewish 12th. . Therefore in then the sixth, in the 15 [Newton also counted it as five years] which extended from the baptism to the resurrection, no Nisan bagan on the 7 th day of the week except that one in which the lord suffered, and to wiloh the twentieth year of $11 b e r i u s$ agreed, Whose Ni san new moon was 6.19 . 95."--Scaliger, "De Emendatione Temporum," p. 265 .

Observation Versus Computation

"Now a second question follows, whether they determined the lunar months from the vision of the moon, or from an artificial cyole. The most of the rabbins think that they appointed from vision: Paul of Middelburgh, to be oited in the following chapter, and after him, Onuphrius, in Calendars concerning the year of the founding of the City, 786, and Salmeron admits the same oustom of the ancient $\mathrm{He}-$ brews, Tomo I. Prologomeno 38; but our Petavius copiously sets forth in Epiphanius from the Hebrews themselves, when he leads out concerning the year and day of the passion of Christ; and again, in Doctrine of the Times, lib. 2. cap. 26. Also Scaliger himself, lib. 2. of the New Correction, in the chapter pertaining to the Period of the Jews in Alexandria, from which we especially draw out this: that the ancient Hebrew masters disputed marvelously among themselves conoerning their primitive year, in regard to the place of defence [lilum] in the 12th chapter of Exodus, 'Hio Mensis orit vobis initium Mensium:' that it was agreed by all to be lunar, but whether they appointed the new moon days from the phasis of the vision, or also from a written oyele, there is a wonderful difference of opinion: in the Talmud, chapter Rosh Hashana, it is written that they appointed from vision; and that with reference to the thing, suitable scouts were sent forth, free from crime, older witnesses in every exception, who ascended the highest mountains, and would announce that the nascent moon was seen by them, and that then it was shouted by the Jewish witnesses, who had been first carefully examined, Mekudasch, mekudasch, Sanctificata est, sanotificata est -- to wit, the New Moon! And thus, with clang of trumpet, the new moon day was appointed, according to that in Psalm 80 [81], Buccinate in Neomeniâ tubâ. And the citation held that this conformity to nature was probable among the Hebrews, by whom, thus far, the computation of the course of the moon had not been known. These things with reference to that, Scaliger especially. . Wherefore, that the Hebrews at first had a computation of the vision of the moon is not what we refute. On the contrary, and afterwards also, Clemens Alexandrinus, Stromateo 6, signifies that they had it: The Jews (he says), unless the moon should have appeared, do not observe the Sabbath which is called first, nor do they keep the New Moon, or unleavened bread, or Feast, or the Great Day. And these words surely prove irrisistibly that at all events some oomputation of the vision of the moon was held by the Jews.
"But this idea permits no small diffioulties. For how, as Soaliger rightly says above, could so many thousands of Jews fix the new moon from its appearance, or await the messenger from Judaea, when they were soattered by such long distances, in low valleys, in northern sites, in which tempests and familiar clouds of ten begrudged to the eyes of man the vision of the nasoent moon? Wi, th regard to this, the moon could be seen in a very few hours after conjunction, although very rarely. Again and again, the phasis of the accompanying new moon day will appear on the second day from conjunction. Thus the month to be appointed might be thirtyone days, which is absurd in a lunar year. Again, the same Scaliger, in Canons of the Isagogue, lib. 3. cap. 6. pag. 266: Very frequently, the moon effeots no power of her being seen for a whole three days from conjunction; and it can happen that straightway from conjunotion, on the following now moon day she can be seen. In this way, the civil month would often be only 27 days. Indeed, it happens that the moon can be hidden and seen on the same day, but this certainly very rarely occurs; and it does not happen except, as Pliny says, when the sun is in Aries. Wherefore, it is in the power of no mortal to begin the new moon days from the appearance of the moon, because the time of the vision may be altogether unequal and uncertain. Furthermore, even if at the same time the new moon could be seom, yet it might not, because of overhanging clouds. Therefore, it is most foolish, what certain Jews, ancient as also recent, write that when each temple was standing, it was the custom to appoint the new moons from the vision of the moon. The Mohammedans, who begin the new moon of Muharram three days or two days after the conjunotion of the luminaries, could not execute this. For not in every new moon, not even. in a cloudless sky, could they see the moon. Thus Scaliger. And with these things I seem to be in conformity, what is read in the oited Talmud , that sometimes it happened a certain appearance and likeness of the moon would appear on the 27 th day of the month; and the whole people would shout, Mekudasch, mekudasch, Sanctificata est, sanctificata est. But by Rabbi Simeon, son of Gamaliel, advisor, it was decreed that by the Caloulation of the Synagogue, the New Moon would be appointed on the next day.

Observation Versus Computation

Now a second question follows, whether they determined the lunar months from the vision of the moon, or from an artificial oyole. The most of the rabbins think that they appointed from vision: Paul of Middelburgh, to be oited in the following chapter, and after him, Onuphrius, in Calendars concerning the year of the founding of the City, 786, and Salmeron admits the same custom of the ancient $\mathrm{He}-$ brews, Tomo I. Prologomeno 38; but our Petavius copiously sets forth in Epiphanius from the Hebrews themselves, when he leads out concerning the year and day of the passion of Christ; and again, in Doctrine of the Times, lib. 2. cap. 26. Also Scaliger himself, lib. 2. of the New Correction, in the chapter pertaining to the Period of the Jews in Alexandria, from which we especially draw out this: that the ancient Hebrew masters disputed marvelously among themselves conoerning their primitive year, in regard to the place of defence [lilum] in the 12th ohapter of Exodus, 'Hic Mensis erit vobis initium Mensium:' that it was agreed by all to be lunar, but whether they appointed the new moon days from the phasis of the vision or also from a written oycle, there is a wonderful difference of opinion: in the Talmud, chapter Rosh Hashana, it is written that they appointed from vision; and that with reference to the thing, suitable scouts were sent forth, free from crime, older witnesses in every exception, who ascended the highest mountains, and would announce that the nascent moon was seen by them, and that then it was shout ed by the Jewish witnesses, who had been first carefully examined, Mekudasch, me kudasch, Sanctificata est, sanotificata est -- to wit, the New Moon! And thus, with clang of trumpet, the new moon day was appolnted, according to that in Psalm
 to nature was probable among the Hebrews, by whom, thus far, the computation of the course of Scaliger espeolally. - Wherefore, that the Hebrews at irst had a computation af cislons Alexandrinus, Stromateo 6 sianif that they had (ho, Clu is sar , unles is the Great Day. And these words surely prove irrisistibly that a.t all events some "omputation is idea permits no small difficulties. For how,
above, could so many thousands of Jews fix the new moon from its iger rightly says above, could so many thousands of Jews fix the new moon from its appearance, or await the messenger from Judaes, when they were scattered by such long distances, in low valleys, in northorn sitos, in begrudged to the eyes of man the vision of the nascent moon? With regard to this, the moon could be seen in a very few hours after con, junotion, although very rarey. Again and again, ine phasis of che accompanylng now moon day will appear on ano whe is surd in a one days, whioh li of the Isagogue, lib. . cap. 6. pag. 266: Very frequently. the moon effects no own In this way, the civil month would often be only 27 days. Indeed, it happens that the moon can be hidden and seen on the same day, but this certainly very rarely occurs; and it does not happen except, as Pliny says, when the sun is in Aries. Wherefore, it is in the power of no mortal to begin the new moon days from the ap if an in. Fur it might not, because or it wes the custom to apoint the new won hamedons, who berin the new moon of Muharram three days or two days after the hammedans, who begin the new moon of Muharram three days or two days after the conjunction of the luminaries, could not execute this. For not in every new moon, not even in a cloudless sky, could they see the moon. Thus salt these things i seem to be in conformity, what is read in the oited Talmud then pare on the 27th day of the month, and the whole people would shout, Meludasch appear on the mell New lioon would be appointed on the next day
"Certainly experience terahes that the moon rums upon the eyes, quickly, sometimes slowly. Whence, if the month is to be cormenced by a look at her, how can it be begun by all of the earth everywhere on the same day? how can the same feasts be kept everywhere on the same day? Indeed, although no oyole at $a 11$ is able to be constructed to exactly answer to the celestial motions of the moon, yet, by it, the new moons are determined with less evil, less inconvenience than from vision."--Bucherius, Aegidius, "Tractatus De Paschali Judaeorum Cyclo," p. 373. Antverpiae, 1634.

New Moon Limits -- Scaliger
"For no one is ignorant that the celestial course of the moon is finished, sometimes in fewer, sometimes in more days. Whence, the motions of the mean moon are adopted by astronomers, by which they then cheok the irregular course of the moon by certain rules. Then again so many names of the moon dying, and reviving, and again in various languages. Rightly Scaliger says, lib. 3. Can. Isagog. pag. 264. The Hebrews call the limits of the new moons $ש T i M$ in the same manner as the Greeks evnl kai veav, the Latins old, new: and since as the oldest masters of the therefore they so had in the full months the triakade [the thirtieth day] just akade on account of the new moon day: since it was unoertain whether the moon akade on account of the new moon day: since it was unoertain whether the moon would be renewed in triakade or in the and New Moon were being connected because of a doubtful moon, therefore both were made sacred. Thus Scaliger. . The Jews, therefore, in orderto depart
 as little as possible from the $\frac{\text { feast da }}{\text { p. } 382 \text {. }}$

Tricesima Sabbata

"There is a celebrated song of the poet Horace, from his first book of Sermons, Satire 9, in which he introduces Fuscus Aristius his friend, thus talking with him:
(B.C. 65-8) Horace. Certainly, I do not know why you were saying that you wish to speak secretly with me. Fuscus. I well recollect, but in a better time let me speak; today is the thirtieth sabbath, do you wish to offend the circumcized Jews?
Horace. I say, I have no law. Fuscus. As for me, I am a Horace. I say, I have no law. Fuscus. As for me, I am a little more infirm, one of many; you will pardon, at another
time let me speak. Horace. Have I thus raised up for me the time let me speak. Horace. Have I thus raised up for me
black sun? The reprobate flees, and leaves me in danger.
"Where the ancient interpreter Acron says: The Thirtieth Sabbath the Jews call New Moons: since during the Sabbeth, the Jews pronounce the lunar numbers. Io! as from the opinion of this Gentile interpreter also, The Thirtieth Sabbath are New Moons, not at least in any other sense than what we have taken here, that indeed Luna 30 , or the last day of the vanishing oivil month, in whioh of ten it happens that the moon is renewed, would be equally a feest, and a civil new moon itself, on account of the uncertain hour of the new moon, which the Jews Judaeorum Cyclo," pp. 384, 385. Antverp. 1634.
"Now a second question follows, whether they determined the lunar months from the vision of the moon, or from an artificial cycle. The most of the rabbins think that they appointed from vision: Paul of Middelburgh, to be oited in the following chapter, and after him, Onuphrius, in Calendars concerning the year of the founding of the City, 786 , and Salmeron admits the same oustom of the anoient Hebrews, Tomo I. Prologomeno 38; but our Petavius copiously sets forth in Epiphanius from the Hebrews themselves, when he leads out concerning the year and day of the passion of Christ; and again, in Doatrine of the Times, lib. 2. osp. 26. Also Soaliger himself, lib. 2. of the New Correction, in the chapter pertaining to the Period of the Jews in Alexandria, from which we especially draw out this: that the ancient Hebrew masters disputed marvelously among themselves concerning their primitive year, in regard to the place of defonce [lilum] in the lath chapter of Exodus, Hio Mensis orit vobis initium Mensium: that it was agreed by all to be lunar, but whether they appointed the new moon days from the phasis of the vision, or also froma Talmud, chapter Rosh Hashana, it is written that they appointed from vision; and that with reference to the thing, suitable scouts were sent forth, free from crime, older witnesses in every exception, who ascended the highest mountains, and would announce that the nascent moon was seen by them, and that then it was shout ed by the Jewish witnesses, who had been first carefully examined, Mekudasch, me kudasch, Sanotificata est, sanotificata est -- to wit, the New Moon! And thus, with olang of trumpet, the new moon day was appointed, according to that in Psalm 80 [81], Bucoinate in Neomenia tuba. And the citation held that this conformity to nature was probable among the Hebrews, by whom, thus far, the computation of the course or the hat Scs liger especially. . . Wherefore, that the Hebrews at first had a computation of the vision of the moon is not what we refute. On the contrary, and alter also, Clemen her the (he says), unless the moon should have appeared, do not observe the Sabbath which is called first, hor do they keep the New Moon, or unloavoned or the Great Day. And these words surely prove irrisistibly that at all events some oomputation of the vision of this idea permits no small diffioulties. For how

But this idea permits no small diffimulties. For how as Scaliger rightly savs

Translation Period of Two Days

"And they do not err less who bind up the Jewish Passover on Luna 14, from accurate computations of the mean motions, since sometimes the phasis could happen in a political year two days after the mean conjunction: concerning which af terward."--Petavius, Dionysius, "Animadversiones Epiphanius," p. 152.
one days, which is absurd in a lunar year. Again, the same Scaliger, in Canry one days, which is absurdin a lunar year. Again, the same scaliger, in Canons of the Isagogue, lib. 3. cap. 6. pag. 266: Very frequently. the moon effeots no power of her being seen for a whole three days from conjunction; and it can happen In this way, the civil month would often be only 27 days. Indeed, it happens In this way, the moon can be hidden and seen on the same day, but this certainly very rarethat the moon can be hidden and seen on the same day, but this certainly very rareWherefore, it is in the power of no mortal to begin the new moon days from the appearance of the moon, because the une of the an unoertain. Furthornore, evon if ation it might not, because of overhanging olouds. inat it it was the hammedans, who begin the new moon of Muharram three days or two days after the conjunotion of the luminaries, could not execute this. For not in every new moon, not even in a cloudless sky, could they see the moon. Thus Scaliger. And that sometimes it happened a certain appearance and likeness of the moon would that son 27 th 0 the month and the whole poule appear on the解 paliel, advisor, it was decreed that by the
"Certainly experience teaohes that the moon runs upon the eyes, sometimes quickly, sometimes slowly. Whence, if the month is to be cormenced by a look at her, how can it be begun by all of the earth everywhere on the same day? how can the same feasts be kept everywhere on the same day? Indeod, although no cycle at all is able to be constructod to ex moon, yet, by it, the new moons are determined with less evil, less inconvenCyclo," p. 373 . Antverpiae, 1634.

New Moon Limits -- Scaliger
"For no one is ignorant that the celestial course of the moon is finished, sometimes in fewer, sometimes in more days. Whence, the motions of the mean moon are adopted by astronomers, by which they then check the irregular course of the moon by certain rules. Then again so many names of the moon dying, and reviving, and again in various languages. Rightly Scaliger says, lib. 3. Can. Isagog. pag. 264.
 Greeks évnv kai véav, the Latins old, new: and since as the oldest masters of the Jews say, the moon advances sometimes for a long period, sometimes for a short one, therefore they so had in the full months the triakade [the thirtieth day] just like the se.ored new moon. Indeed, the new moon day in regular order, but the tri akade on account of the new moon day: since it was uncertain whether the moon would be renewed in triakade or in the civil new moon. Since therefore the tr akade and New Moon were being connected because of a doubtful moon, therefore both were made sacred. Thus Scaliger. . The Jews, therefore, in orderto depart as little as possible from the celestial new moon, thought it safest to allow two feast days for it."--Bucherius, Aegidius, "Tractatus De Paschali Judaeorum Cyolo," p. 382.

Tricesima Sabbata
"There is a celebrated song of the poet Horace, from his first book of Sermons, Satire 9, in which he introduces Fuscus Aristius his friend, thus talking with him:
(B.C. $65-8$) Horace. Certainly, I do not know why you were saying that you wish to speak secretly with me. Fuscus. I well recollect, but in a better time let me speak; today is the thir tieth sabbath, do you wish to offend the ciroumcized Jews Horace. I say, I have no law. Fuscus. As for me, I am a little more infirm, one of many; you will pardon, at another time let me speak. Horace. Have I thus raised up for me the black sun? The reprobate flees, and leaves me in danger.
"Where the ancient interpreter Acron says: The Thirtieth Sabbath the Jews call New Moons: since during the Sabbath, the Jews pronounce the lunar numbers. Io! as from the opinion of this Gentile interpreter also, The Thirtieth Sabbaths are New Moons, not at least in any other sense than what we have taken here, that indeed Luna 30 , or the last day of the vanishing oivil month, in which often it happens that the moon is renewed, would be equally a feast, and a civil new oon itself, on account of the uncertain hour of the new moon, which the jews ere superstitiously observing:"--Bucherius, Aegidius, "Tractatus De Paschali Judaeorum Cyclo," pp. 384, 385. Antverp. 1634.
"Certainly Bede wrote that the Scots themselves celebrated from the 14th of the moon to the 20th, although the Catholics observed it from the 15th to the 2lst, so that there was a difference of one day. Since therefore to the Catholics, the 15th of the Paschal is that which ends upon the 16 th, and yet is the 15 th; so, to the fourteenth-day people, in like manner, the 14th day ought to be truly the 15th by night. For if the 13 th by day precedes the Passover, not by one day, but by two they would differ from the Catholios. But from those things to which the same Wilfrid objeots, it can be surmised what either he himself thought, or deemed that Anatolius had in mind, when he says that the Soots commonly celebrated the Passover on the 13th of the moon before the full moon. For this even was the opinion of Theophilus, Cyrill, and of Bede himself, that no moon is called new, which does not lighten up before sunset: so that even if after sunset only she should be lit up, that is, with the sun in conjunction, although for 23 hours afterward she should shine, she would retain that name which she had at the setting sun. As if on the Sabbath, after sunset, the conjunction should take place, not on the following Lord's day, but on the second day of the week must the new moon day be established, which was reported by Bede in the book "Concerning the Plan of the Times," chap. 41, from the teachings of the late Alexandrians. Next, from the fact, that the new moon is sometimes retarded by a whole day, it is necessary that the rest of the days of the moon should follow up more slowly; and so, if, for example, on the Sabbath, immediately after sunset, the full moon should be begun, nevertheless, that whole day will be called the l4th of the moon, not the full moon; whence also the day before will be counted the 13 th, not the 14 th. This was, as has been said, the opinion of the Alexandrians, which even certain Hebrews embraced. For in Glossa, ch. 7, Tract. Kiddusch Hahodesch Tomo 1, Jad Maimonidae, various opinions of the Doctors are related conoerning this thing. Book III, Part II adds to many that the same was defended by Bede, and refuted by Forosemprius, and also Petrius Pitatus Veronius explains, oh. IV \& XV, Can. Pasch. But the Catholic Church by no means follows that which is the plan of the paschal feast according to civil use and a similar cycle; she does not tie together aocording to the observations of mean motions. Moreover, she follows in this very opinion that Luna 14th sometimes falls upon the full moon; and that on this account, the full moon is called by certain writers the 14th. And this also happens, on account of the lunarmponynow after the Nicaean council, after about three centuries. For then, by the days keeping to the same golden numbers, the 14th Micaean moon was made full moon, and this, by chance, on account of the anomaly of the star: since otherwise the full moon was never the paschal limit by the order of the Church, nor was the Pasch delayed to the 22nd of the moon, which is a hallucination of Scaliger most strongly refuted by our Clavius, and very recently by Guldinus of the same society. But according to the firstidea that argument of Wilfrid pertains. For he reproaches the Scots because, although they were celebrating the Pasch on the 14th, yet they had not the plan of the Paschal 14th which Anatolius commanded. For he had maintained the Paschal 14th to be only that which the full moon would await at evening, that is, before sunset, yot besides, would be named 13th, not 14th. But the Soots, by no selection of that kind, were consecrating that l4th for paschal celebration which would fall on the day after the beginning of which only in the subsequent night the full moon was commenoed; and, on that account, would be called, not the lith of the moon, but the 14th, and it was actually the 13th on which the Pasch had been carried on." - Petavius, Dionysius, "Animadversiones in Epiphanii opus," pp. 195, 196.

The Horned Moon

"But they who are of the opinion that Christ suffered in the year 33 on April 3, think that this happened on Luna 15. But Paul, on Luna 14; neither on the Passover itself, or on the first day of unleavened bread, but on the day before, evidently, on March 30. But Lucas Gauricus and Onufrius who followed him affirm the passion to be in the year 34, not indeed on Luna 15, but on the 18th March; since they consider that the Jews began the new moons, not from the interval of the new moon, but from the form of the horned moon, which opinion we shall presently examine."--Petaviux,

Prinoiples Governing Observation of the Moon

"But this idea [observation only] pormits no small diffioultios. Por how, as Soaliger rightly says above, could so many thousands of Jews fix the new moon from its appearance, or avait the messonger from Judaea, whon they were seattored by such long distances, in low valleys, in northorn sites, in whioh tempests and familiar clouds often begrudged the eyes of man the vision of the mascent moon? inth regard to this, the moon could be seen in a vory fow hours after conjunotion, although very rarely. Then, again and again, the phasis of the accompanying now moon day will appoar on the second day after oonjunotion. Thus the month to be appointed might be thirtyoone days, which is absurd in a lumar yoar. Again, the same Soeliger, in Canons of the Isegogue, lib. 3. oap. 6. pag. 266: Vory frequently, the moon offeots no power of her being seen for a whole throe days from conjunotion; and it can happon that straightuny from conjunction, she oan be seon on the following now moon day. In this way, the oivil month would often be only 27 days. Indeod, it happons that the moon aan be hidden and seen on the same day, but oortainly, this vory rarely ocours; and it does not happon excopt, as Pliny gays, when the sum is in Aries. Wherefore, it is in the power of no mortal to bogin the now moon days from the appearance of the moon, because the tine of the vision may be altogether unoqual and uncertain. Furthormore, even if at the same time the now moon could be seen, yet she might not, because of overhanging elouds. Thereforo, it is most foolish, what oertain Jevis, anoiont as also recent, write. that when each tample was standing, it vas the oustom to appoint the now moons from the vision of the moon. The liohamedans, who begin the new moon of Muharram throe days or two days, aftor the conjunotion of the luninaries, could not execute this. For not in every moon, not oven in a oloudless sky, could they see the moon. Thus Sealiger. And with these things I seemi to be in conformity -- that which is sald in the ofted Talmud -- that sometimes it happened a cortain appearance and likenoss of the moon would osour on the 27th day of the month; and all the poople would shout, Meludasoh, mekudasch, Sanetifleata est, sanotificata est. But by Rabbi Simeon, advisor, son of Gamalie1, it was deoreed that by the caloulation of the Symagogue, the new zoon would be appointed on the next day.
"Cortainly experience teaches that the moon runs upon the oyes sometimes quiokiy, sometimes slowly. Thence, if tho month is to be comenoed by a look at hor, how oan it be begun everywhere by all of the earth on the same day? how ean the same foaste be kept everywhore on the same day? Indeed, elthough no oyole oan be constructed to exnotly answor to the celestial motions of the moon, yet, by it, the now moons are detormined with less ovil, less inconvenionce than from visiono"--Buchorii, Aegidii, "Tractatus De Paschali Judaeorma Cyolo," p. 373. Antverpiae, 1634.

Pliny Re a Visible 01d and Now Moon on the Same Day

"The loon makes her double conjumetion with the sun in no other sign exoept Gomini, while Sagittarius is the only sign in which she has no conjunotion. The old and the now moon are visible on the same day or night in no other sign exoept Aries, and Indeed it has happened vory seldom to any one to have vitnessed it."Pliny, "Natural IRstory," Tr. by Bostook and Riloy, Vol. I, p. 49. Iondon, 1855.

Hovelius Re the Appearance of the Plrst and Seoond Moon

"But we call the horned moon that phasis, which to some of the anoients is the second moon, because, on the second day after the conjunotion of all Iuninaries, she may be oarliest seen, and follows the first moon. But, beeause on the second day, she cannot alvays appoar in sight, all those causes can hinder whioh do not allow the first moon to be seen on the first day after conjunction. And the partioular hindrance is when she is turned about in the signs of short settings, of which kind ares Ganoer, Leo, Virgo, Libra, Scorpio, and Sagitterius. For although the moon may be in perigee, and around the northern border, yot if

Prinoiples Governing Observation of the Moon

"But this idea [observation only] permits no small difficulties. For how, as Soaliger rightly says above, could so many thousands of Jews fix the new moon from its appearanoe, or await the messenger from Judaea, when they were soattered by such long distances, in low valleys, in northern sites, in which tempests and familiar olouds often begrudged the eyes of man the vision of the nascent moon? With regard to this, the moon could be seen in a very fow hours after conjunotion, although very rarely. Then, again and again, the phasis of the accompanying now moon day will appear on the second day after conjunotion. Thus the month to be appointed might be thirty-one days, which is absurd in a lunar year. Again, the same Soaliger, in Canons of the Isagogue, lib. 3. cap. 6. pag. 266: Very frequently, the moon effects no power of her being seen for a whole three days from conjunction; and it can happen that straightway from oonjunotion, she can be seen on the following new moon day. In this way, the oivil month would often be only 27 days. Indeed, it happens that the moon oan be hiddon and seen on the same day, but oertainly, this very rarely ocours; and it does not happen excopt, as Pliny says, when the sun is in Aries. Wherefore, it is in the power of no mortal to begin the new moon days from the appearanoe of the moon, beoause the time of the vision may be altogether unequal and unoertain. Furthermore, even if at the same time the new moon could be seen, yet she might not, beoause of overhanging olouds. Therefore, it is most foolish, what certain Jews, ancient as also reoent, write, that when each temple was standing, it was the eustom to appoint the new moons from the vision of the moon. The Nohammedans, who begin the new moon of Nuharram three days or two days, after the oonjunotion of the luminaries, could not execute this. For not in every moon, not even in a oloudless sky, could they see the moon. Thus Soaliger. And with these things I seem to be in oonformity -- that which is said in the oited Talmud -- that sometimes it happened a certain appearance and likeness of the moon would ooour on the 27 th day of the month; and all the people would shout, Mekudasoh, mekudasoh, Sanotificata est, sanotilicata est. But by Rabbi Simeon, advisor, son of Gamaliel, it was deoreed that by the caloulam tion of the Synagogue, the new moon would be appointed on the next day.
"Certainly experionoe teaches that the moon runs upon the oyes sometimes quiokly, sometimes slowly. Whenee, if the month is to be commenced by a look at hor, how oan it be begum ovorywhere by all of the earth on the same day? how ean the same feasts be kept everywhere on the same day? Indeed, although no oyole can be construoted to exactly answer to the celestial motions of the moon, yet, by it, the new moons are determined with less evil, less inoonvenienoe than from vision."-Ducherii, Aegidii, "Traotatus De Pasohali Judaeorum Cyolo," pe 373. Antverpiae. 1634.

Pliny Rò a Visible Old and Now Moon on the Same Day

"The Moon makes her double oonjunotion with the sun in no other sign exoept Gemini, while Sagittarius is the only sign in whioh she has no oonjunotion. The old and the new moon are visible on the same day or night in no other sign except Aries, and indeed it has happened very seldom to any one to have witnessed it."Pliny, "Natural History," Tr. by Bostook and Riley, Vol. I, P. 49. London, 1855.

Hevelius Rè the Appearanoe of the First and Second Moon
"But we call the horned moon that phasis, which to some of the ancients is the seoond moon, beoause, on the second day after the conjunotion of all luminaries, she may be earliest seen, and follows the first moon. But, beeause on the second day, she cannot always appear in sight, all those oauses oan hinder which do not allow the first moon to be seen on the first day after conjunction. And the partioular hindrance is whon she is turned about in the signs of short settings, of which lcind are: Cancer, Leo, Virgo, Libra, Soorpio, and Sag ittarius.
For although the moon may be in perigee, and around the northern border, yet if she does not approach a sign of long sotting, in vain is the horned moon-expeeted on the second day. "--Hevelius, "Selenographia, p. 281. Gedanum, 164.7.
"The dispersion of the Jews had therefore presented them with an additional difficulty in fixing the beginning of their months. The problem is much more intricate to-day, seeing that the Jews are dispersed over the whole world, and the moon, first visible on one evening at Jerusalem, might be seen the evening before, according to the reckoning of places west of Jerusalem, or might be invisible until the following evening, according to the reckoning of places east of it. . .
"But the "moon" we choose for the ecclesiastical oalendar is an imaginary body, which is so controlled by specially constructed tables as to be "full" on a day not differing by more than two or three days at most from the date on which the actual moon is full. This may seom, at first sight, a very clunsy arrangement, but it has the advantage of defining the date of Easter precisely, without introducing any question as to the special meridian where the moon might be supposed to be observed."--Maunder, E.W., "The Astronomy of the Bible," p. 298. Sec. ed., London.

An Acknowledgment That a Festival May be Earlier in the West than in the East
"Thus, in 1905, the moon was full at $4^{h} 56^{\mathrm{m}}$ Greenwioh mean time on the morning of March 21. But Baster Day was not fixed for Maroh 26, the next Sunday following that full moon, but a month later, for April 23. For the calendar moon, the imaginary moon, was full on March 20; and it may be added that the actual moon, though full on March 21 for European time, was full on March 20 for Americen time. There would have been an ambiguity, therefore, if the actual moon had been taken, according to the country in whioh it was observed, an ambiguity which is got rid of by adopting a technical or imaginary moon."--Maunder, E. W., "The Astronomy of the Bible," pp. 298, 299. Sec. ed., Iondon.

Schism in 1lth Century over Festivals on Different Meridians

"Elias of Nisibis (obiit post 1046) tells us that the year of the Hegire, 309 began on Saturday, the 22nd of Ijar, in the year 1232 of the Greek era; and that, in this year, a sohism broke out between the Eastern and Western Jews in reference to the dates of the Feasts. The Western Hebrews began their year on a Tuesday, the Eastern on a Thursday. Here we have clear evidence that the Eastern Jews, i.e. those of Babylon, celebrated the New Year's day in 1233 on a Thursday, and consequently the preceding Passover must have been on a Tuesday. . We see also that the Western Jews, i.e. those in Palestine, followed the head of their school and kept Passover - and consequently all the other feasts -- two days earlier than their Eastern correligionists...
"The events here related we have also rediscovered in a Hebrew souroe, viz - in Sahl b. Mazliach's polemic against Jacob b. Samuel, Saadiah's pupil. The former, a Karaite zealot, says that in the time of the Fajjumite (Saadiah) a dispute broke out concerning the Feasts which the Palestinians kept on different days to the Babylonians. The two parties indulged in mutual recriminations and excommunioations, and even went so far as to oharge one another with fraud and deception."--Poznanski, Samuel, "Jewish Quarterly Review," Vol. X, 1897, pp. 153, 154.

Rabbanites Tolorated Open Unbelief Rather than a Change in Festival Dates "The consciousness, however, that the Calendar was of comparatively late origin induced not only the Karaites, but also the other sects to reject and denounce it. Characteristic is the following narrative of al-Qirqisani, one of Saadiah's contemporaries: 'I once said to the Palestinian, Jacob b. Ephraim, "You have intercourse with the Isawites (i.e, followers of Isa or Obadiah al Isfahani), you even intermarry with them. But they acknowledge as prophets those whom you do not recognize." The reply was "They have not seceded from us (the Rabbanites) in regard to the Feasts." This shows that the Rabbanites tolerated open unbelief rather than a schism in the dates of the Feasts which they themselves permantly fixed." -- Poznanski, Samuel, "Jewish Quarterly Review," Vol. X, 1897, p. 159.
"However, astronomers and all those who consider the subject attentively, are well aware that the appearance of new-moon does not proceed regularly according to one and the same rule for several reasons: the motion of the moon varies, being sometimes slower, sometimes faster; she is sometimes near the earth, sometimes far distant; she ascends in north and south, and descends in them; and each single one of these occurrences may take place on every point of the ecliptic. And besides, some sections of the ecliptic sink faster, others slower. And all this varies according to the different latitudes of the countries and according to the difference of the atmosphere. . . For these reasons the month Ramadan is sometimes incomplete, sometimes complete, and all this varies according to the greater or less latitude of the countries, and vioe versa. Further, 21 so , these differences in the various countries do not follow one and the same rule; on the contrary, one identical oircumstance may happen to one month several consecutive times or with interruptions.
"But even supposing that the use which they make of those tables and calculations were correct, and their computation agreed with the appearance of the newmoon, or preceded it by one day, which they have made a fundamental principle, they would require special computations for each degree of longitude, because the variation in the appearance of new-moon does not depend alone upon the latitudes, but to a great extent also upon the longitudes of the countries. For, frequently, new-moon is not seen in some place, whilst she is seen in another place not far to the west; and frequently she is seen in both places at once. This is one of the reasons for which it would be necessary to have special calculations and tables for every single degree of longitude. Therefore, now, their theory is quite utopian, viz. that the month of Ramadan should always be complete, and that both its beginning and end should be identioal in the whole inhabited world, as would follow from that table which they use."-Albiruni, "Chronology of Ancient Nations," pp. 77, 78. London, 1879.

Irregularity of Moon's First Appearance

Abstract

"With regard to this, the moon could be seen in a very few hours after conjunction, although very rarely. Then again and again, the phasis of the following new moon day will appear on the second day after conjunction. . . [quoting from Scaliger again] Very frequently, the moon effects no power of her being seen for a whole three days from conjunction; and it can happen that straightway from conjunction, she can be seen on the following new moon day. . Indeed, it happens that the moon can be hidden and seen on the same day, but certainly this very rarely occurs; and it does not happen except, as Pliny says, when the sun is in Aries.. The Mohamedans, who begin the new moon of Muharram three days, or two days, after the oonjunation of the luminaries, could not exeoute this [i.e. always starting from the phasis]. For not in every moon, not even in a oloudless sly, could they see the moon. Thus Sosliger. [Bucherius cantinues] And with these things I seem to be in conformity -- what is said in the cited Talmud -- that sometimes it happened a certain appearance and likeness of the moon would ocour on the 27 th day of the month; and all the people would shout, Mekudasch, mekudasch, Sanctificata est, sanctificata est. But by the advisor, Rabbi Simeon, son of Gamaliel, it was deoreed that by the Calculation of the Synagogue, the moon would be appointed on the next day."--Bucherius, Aegidius, "Traotatus De Paschali Judaeorum Cyolo," p. 373. Antverpiae, 1634.

Pliny's Oft-quoted Statement Re Observance of Moon in Aries

"The moon makes her double conjunotion with the sun in no other sign except Gemini, while Sagittarius is the only sign in which she has no conjunction. The old and the newmoon are visible on the same day on night in no other sign except Aries, and indeed it has happened very seldom to any one to have witnessed it."-Pliny, "Natural History," Tr. by Bostock and Riley, vol. I, p. 49. Iondon, 1855.

Hevelius Re the Appearance of the First and Second Moon "But we call the horned moon that phasis, which to some of the anoients is the she men conjunotion of all luminaries, day, selons the first moon. But, because on the second low the first lar hindrance is, when she is turned arst day after conjunction. And the particukind are: Cancer Leo, Virgo, Libra, Scorpio, the signs of short settings, of which moon may be in perigee, and around the northern bogittarius. For although the a sign of long setting, in vain is the horned moon expeced ye she does not approach Hevelius, Johannes, "Selenographia," p. 281. Gen expeoted on the second day."-Hevelius, Johannes, "Selenographia," p. 281. Gedanum, 1647.

Passover Limits

"In like manner the earliest passover today is on the 3rd of April; but in the times of the Messiah it was occurring upon the eighth, in the first Dionysian cycle, in the 16th Jewish. The latest passover of today is upon the calends of May; in the time of the Messiah, upon the sixth, in the l5th Dionysian cycle, and Jewish 12th. . . Therefore, in that whole five-year period [Newton also counted it as five years] which extended from the baptism to the resurrection, ho Nisan began on the 7 th day of the week except that one in which the Lord suffered, and to which the twentieth year of Tiberius agreed, whose Nisan new moon was 6.19.95."--Scaliger, "De Emendatione Temporum," p. 265,

Schurer Re the Position of the Passover

"Lastly, the extract from Anatolius, given in Euseb. Hist. Ecol. VII. 32. 1718, is occupied with the Passover, which is celebrated, when both the sun and moon are in the equinox, viz. the sun in the vernal, and the moon opposite him in the autumnal equinox. Just this fragment shows, that Aristobulus by no means ocoupied himself with only philosophically explaining away the text of the Pentateuch, but that he really gave a description and explanation of the Mosaic law.""-Schurer,

At Bottom, Passover Regulates Jewish Calendar

"The Jewish year, however, is a threefold one. For they have made an arrangement among themselves, that New Year shall not fall on a Sunday, Wednesday, or Friday, i.e. on the days of the sun and his two stars (Meroury and Venus); and that Passover, by which the beginning of Nisan is regulated, shall not fall on the days of the inferior stars, i.e. on Monday, Wednesday and Friday, for reasons on which we shall enlarge hereafter as much as possible. Thereby they were compelled either to postpone or to advance New Year and Passover, when they happened to fall on one of the days mentioned."-Albiruni. "Chronology of Ancient Nations," p. 66. Iondon, 1879.

Marchesvan and Kisleu Fix the Whole Calendar

"God has made manifest his will in reference to the Marohesvan and Kisleu and (consequently) the whole year by this, that he made the number of days of the week an uneven number, and fixed for every (week?) that which we mentioned already. Through this the months . . reciprocally, and they follow each other as they should (?). Namely, once something was fixed in regard to these two months by the fixed norm (of the Calendar?), there is no possibility either to add or to detract anything from the other months, for by it the other ten are already fixed."--Poznanski, Samuel, Anti-Karaite Writings of Saadiah Gaon, "Jewish Quarterly Review,"

New Moon Limits -- Soaliger

"Rightly Scaliger says, lib. 3. Can. Isagog. pag. 264: The Hebrews call the limits of the new moons in the same manner as the Greeks the Latins, old, new; and since, as the oldest masters of the Jews say, the moon advances sometimes for a long period, sometimes for a short one, therefore they so had in the full months the triakade [the thirtieth day] just like the sacred new moon. . . since it was uneertain whether the new moon would be renewed in triakade O in the civil new moon. Since therefore therefore the triakade and New Moon were being connected because of a doubtful moon, therefore both were made saored. Thus Soaliger. . The Jews, therefore, in order to depart as little as possible from the celestial new moon, thought it safest to allow two feast days for it."--Bucherius, Aegidius. "Tractatus De Paschali Judaeorum Cyc10," p. 382.

Triakade Also Called Tricesima Sabbath

"There is a celebrated song of the post Horace, from his first book of Sermons, Satire 9, in which he introduces Fuscus Aristius his friend, thus talking with him:

Horace [B.C. 65-8]. Certainly, I do not know why you were saying that you wish to speak searetly with me. Fuscus. I recollect well, but in a better time let me speak; today is the thirtieth Sabbath, do you wish to offend the ciroumcized Jews? Horace. I say, I have no law. Fuscus. As for me, I am a little more infirm, one of many; please pardon, at another time let me speak. Horace. Have I thus raised up against me the black sun [an eclipse]? The reprobate flees, and leaves me in danger.
"Where the ancient interpreter Acron says: The thirtieth Sabbath the Jews call new moons: since during the sabbath, the Jews pronounce the lunar numbers. Io this also, from the opinion of a Gentile observer: The thirtieth Sabbaths are new moons, not in any other sense than what we have taken here, that indeed Luna 30, or the last day of the vanishing civil month, in which often it happens the moon is renewed, would be equally a feast, and a civil new moon itself, on account of the uncertain hour of the new moon, which the Jews were superstitiously observing."--Bucherius, Aegidius, "Tractatus De Paschali Judaeorum Cyolo," pp. 384, 385. Antverpiae, 1634.

How the Jews Count and Date their Day

Abstract

"Furthermore, it must be understood that when I say that Tisri begins from the loth of October, I mean from the night which followed sunset of the 9 th day, from which sunset the Jews count the beginning of the loth. Thus, the evening of the sixth day itself is the beginning of the Sabbath. When, therefore, I speak of the beginning of the Sabbath, I mean sunset of the day of Venus."--Scaliger, "De Emendatione Temporum," p. 85. Francofurt, 1593.

No Lunar Year By Nature Consists of 353 Days
"For therefore Kisleu, which is full by nature, may, by arrangement, become hollow; or, by nature, for the reason that in the 19th year of the paschal cyole, Dionysius out off one day, which he called the "leap" of the moon, but which the Greek computers called the "cutting off" of the moon, although it foolishly constitutes the last year of the l9-year cycle as only 354 days, when there is no such year in nature."--Scaliger, "De Enendatione Temporum," p. 10. Francofurt, 1593.

Bucherius Rè Caloulation

[^7]
(2) Center for
 Adventist Research

The Andrews University Center for Adventist Research is happy to make this item available for your private scholarly use. We trust this will help to deepen your understanding of the topic.

Warning Concerning Copyright Restrictions

This document may be protected by one or more United States or other nation's copyright laws. The copyright law of the United States allows, under certain conditions, for libraries and archives to furnish a photocopy or other reproduction to scholars for their private use. One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research. This document's presence in digital format does not mean you have permission to publish, duplicate, or circulate it in any additional way. Any further use, beyond your own private scholarly use, is your responsibility, and must be in conformity to applicable laws. If you wish to reproduce or publish this document you will need to determine the copyright holder (usually the author or publisher, if any) and seek authorization from them. The Center for Adventist Research provides this document for your private scholarly use only.

The Center for Adventist Research

James White Library
Andrews University
4190 Administration Drive
Berrien Springs, MI 49104-1440 USA
+001 2694713209
www.andrews.edu/library/car
car@andrews.edu

Disclaimer on Physical Condition

By their very nature many older books and other text materials may not reproduce well for any number of reasons. These may include

- the binding being too tight thus impacting how well the text in the center of the page may be read,
- the text may not be totally straight,
- the printing may not be as sharp and crisp as we are used to today,
- the margins of pages may be less consistent and smaller than typical today.

This book or other text material may be subject to these or other limitations. We are sorry if the digitized result is less than excellent. We are doing the best we can, and trust you will still be able to read the text enough to aid your research. Note that the digitized items are rendered in black and white to reduce the file size. If you would like to see the full color/grayscale images, please contact the Center.

Disclaimer on Document Items

The views expressed in any term paper(s) in this file may or may not accurately use sources or contain sound scholarship. Furthermore, the views may or may not reflect the matured view of the author(s).

[^0]: * With the Arabs, as with the Jews, "their night preceded their day."-Albirûnî. "Chronology of Anoient Nations," p. 5. Theycoll the " $144^{\text {ch " }}$ the night betwenn 13 and 14 , for

[^1]: * Geminus here means lunar month, not civil.

[^2]: "Nearly all the writers of the New Testament were familiar with it, and were more or less influenced by it in thought and diotion. It is quoted as a genuine production of Bnooh by St. Jude, and as Scripture by St. Barnabas. The authors of the Book of Jubilees, the Apooalypse of Baruoh, and 4 Erra, laid it under contribution. With the earlier Fathers and Apologists it had all the weight of a canonioal book. "--Note to INTRODUCTION, page 163.

[^3]: Digitized by the Center for Adventist Research

[^4]: * Note: The sane according to the explanation of Raschis differently R. Abraham ha-Nasi in Sefer he-Ibbur Th. II porta 5; of. Asarjah de Rossi, Hoor Anajim, Appendix.
 ** Note 5, p. 212 The derk sentences asked by Aba wore lator explained by R. Seira who had gone to Babylon from Pelostine. Yot this oxplanation to be foundin the Talmud (Rosch ha-Sohemah 20b) is still so dark that the commentaries differ on it in many interprotations. of. Raschi and lioor, some Kosari IIz 20, Tbu Ssra, Iggergth ho-Schabbath porta II; but ospecialiy R. Isaac Israeli in the

 This calender very liekly contained the order of the festivals as they them usually were set by the palestine Sanhedrin, phich in detemining the beginning of the month as is knom vas rule by the visibilisty of the nowg noon. There fore needs yet a thorough investigation since much can be said acainst it. however, Mainonides Fad ha-Chasakah h. Kiddusch ha-Chedesch cap. 18.
 *** Note 1 p .22 The fact that samuel whished to have the and festival day to be obsorved as holy as the first and that ho stronly animadverted on its dose eoration (Posachin 52a) proves that his statenont. . Hebrew. . had nothing to do vith on intention to remove the socond festival with a fixod caiondar. Cf. Israßli 1, 0 .

[^5]: "But the Chaldean months are the same as the Jews, for the Jews had them from the times of Nabopollassar, father of Nebuchadnezzar, 2.5 will be shown below. They used these months even to the times of Seleucus Nioanor, by whom they were compelled to sign their months with Macedonian names in their contraats and publio doouments, which also the Jews have dome: . Wherefore, how the Chaldean months agree with the Macedonian, below we have submitted an example, with our great wonder how Hyperberetaeus was transferred to an earlier epoch than was appointed by the Macedonians. For the Macedonian Hyperberetaeus was altogether agreeing with our October, and the Jewish Tisri. But nay, the Chaldean even precedes the beginning of September. Even Lysias, prefect of Syria, in a letter to the Jews, 2 Mac.XI:21, sent in the Chaldean year 148, in the month Diosouros, Jewish year 3597, Jewish oycle VI, is witness that in place of Theboch, they had brought Dioscuros into use. Therefore it was embolismic. For in every respect, the Chaldean cycle was the same as the Jewish. Since the Jews, as we have said, received it from the Chaldeans. But further, Dioscuros is outside the regular 12 months; therefore, the month is embolismic. But even the account of the name is most fitting, for the embolismic month is twin-born, like the twins of Castor. In short, the embolismic month was a leaper among the Chaldeans, never remaining in the same position."-- Scaliger, Joseph, "De Fmendatione Temporum," p. 76. Francofurt, 1593.

[^6]: "Already Ezra apparently did not seem to follow the true conjunotion at all times; for the souroe informs us that since his time the month Elul never has been complete (Rosch Hashana $19 \mathrm{~b}, 32 \mathrm{a}$; Beza 6 b and parallel passages). However, the matter is represented in the Talmud as if Ezra had token no steps in this rogard; but that the month Elul had been incomplete during that entire period, as though it were established merely through tradition, or even historically."-Sohwarz, Adolf, "The Jewish Calondar " Po 16, Noto. Breslau, 1872.
 "According to his [Maimonides] opinion, the testimony of dependable witnesses should take precedence over astronamieal caleulations (Kid. Hach. III). But this opinion must seen strange, and more so, since, acoording to Maimmi himself, the subsequent testimony [of the witnesses] is no longer velid on the 31 st dey; and since the whole debate was brought up in the Talmud on account of the question how Elul could be made full in favor of the Babylonians. Cf J.Landau, Commentary on Beza, p. 16."-mohwarz, Adolif "The Jewish Calendar," p. 34. Breslau, 1872.

[^7]: "Certainly experience teaches that the moon runs upon the eyes, sometimes quickly, sometimes slowly. Whence, if the month is to be comnenced by a look at her, how can it be begun by all of the earth everywhere on the same day? how can the same feasts be kept everywhere on the same day? Indeed, although no oycle at all is able to be constructed to exactly answer to the celestial motions of the moon, yet, by it, the new moons are determined with less evil, less inconvenience than from vision."--Bucherius, Aegidius, "Tractatus De Paschali Judaeorum Cyclo," p. 373. Antverpiae, 1634. Digitized by the Center for Adventist Research

