THE DATE OF ARTAXERXES LONGIMANUS

The establishment of midsummer, 457 B.C., as falling in the seventh year of his reign necessitates proof that his reign began in 464 B.C., and not in 465 B.C., as given by many historians.

1. In the Canon of Ptolemy, whose accuracy is fully confirmed by numerous astronomical calculations, the first year of Artaxerxes is the 284th year from the Era of Nabonassar.
2. In this Canon, a king's reign is reckoned only to the last Egyptian New Year's Day, and the remaining fraction of year is reckoned to his successor (as in the cases of Alexander, Philip Arrhidaeus, and Caligula).
3. Consequently, what is reckoned as the first year of a king is simply the year in which he came to the throne. Artaxerxes then came to the throne some time in the 284th year from the Era of Nabonassar.
4. The 284th year began the Egyptian New Year's Day, Dec. 17, 465 B.C., and reached to Dec. 17, 464 B.C..., and Artaxerxes began to reign either in 465 or 464 B.C.
5. If the years of Artaxerxes' reign began between Jan. I and Dec. 17, his reign began in 464 B.C.; and he did not begin to reign in 465 B.C. unless it was after Dec. 17.
6. A comparison of Neh.1:1, 2:1, and Ezra 7:7-9, shows no change in the numbering of his years between some day in Kisleu and the fifth month, Ab , following. In other words, his reign began between the first day of the fifth month, Ab , and the last day of Kislev, the 9 th month.
7. If his reign began near the months 5 to 8 , his accession must have been in 464 BC.
8. If his reign began near the last of Kisleu, it might have been in 465 B.C., as Kislev in certain years reaches past Dec. 17 , even to Jan. 10, as in 1844-45, according to the ancient Jewish calendar, still observed by the Karaite Jews.
9. Did the month Kislev, in 465 B.C., reach beyond Dee. 17 ? $465-464$, if ambo., or 384 d .; If not, the reign of Artaxerxes certainly began in 464 B .C. If it did ais $=\prod^{I I} 27$ reach past Dec. 17, then it is possible that his reign began in $465 \quad 1 \mathrm{Kis}=8 \mathrm{KI} 18$ B.C., and his seventh year did not reach to 457 B.C.

> THE PROOF

In 465 B.C., there were solar eclipses on June 20, Julian Day 1,551,753 at $7 \mathrm{hrs} .16.9 \mathrm{~min} ., \mathrm{G} . C . T . ;$ on Nov. 15, Julian Day 1,551,901, at 10 hrs . 19.6 min. ; and on Dec. 14, Julian Day 1,551,930, at 22 hrs .40 .7 min . (Oppolzer, "Canon der Finsternisse, p.72. The astronomer's designation of $465 \mathrm{~B} . \mathrm{C}$. is " -464 ", as the astronomers count the year before A.D. oles year " 0 ", and historians call it OI B.C. The year historians call 2 B.C., astronomers designate as " -1 "). From this we determine that the Hebrew sacred year began
with the visible new moon on March 25, that the Passover, Nisan 14, fell on Friday, April 7, and that the month Kisleu began with the visible new moon o on Nov. 16, and ended on Dec. 15. The month Kislev then did not reach to Dec. 17, and the reign of Artaxerxes DID NOT BEGIN IN 465 B.C., but in 464,

465 B.C.

 between Ab 1 and Kislev
 bone questionable! 9 . Amadou STAGES OF DEVELOPMENT:
If moon were visible 1. Pre-exilic. Rested upon observation only. on Nou.16, and conj. 2 2. Post-exilic or Talmudic, calculation employed to supplement was on Now.15.53, J.C.T., and correct observations.
Then Tr. Period was only!, post-Talmudic.
6 hes., which is impanible?
Lunar months of 30 and 29 days each. Length of lunar month is 29.530588 days.
The discrepancy with the solar year was corrected by inserting an extra month every two or three years (four times in 11 years).

A second Adar was inserted before Nisan, or Abib, meaning "green ears," whenever crops were not sufficiently advanced to permit presentation of the first fruits of the barley harvest on the 16th of Nisan.

In the 4 th century A.D. the Jews adopted Menton's 19-year cycle, to which there were to be seven leap years: the 3rd, 6th, 8th, 11th, 14th, 17th, and 19th. The feast of Tabernacles was not to end before the autumn equinox, and the full moon of Passover not to precede the spring equinox.

There was a civil year, from early times, which began in the fall. Ex.23:16; 34:22; Lev.25:4,9.

A sacred year, beginning in the spring, was instituted at the Exodus. Ex.12:2.

Same Gregorian calendar as for the year 1934.
Day of Julian Period for Jan. 1, 1934 is 2,427,439
Day of Julian Period " " " 1931 ${ }^{\text {II }} 1,732,381$
Interval equals 695,058 days, exactly 99,204 weeks.
There were solar eclipses (new moons) on
Thursday, May 10, 7 hrs. 17.9 m. , G.C.T. Julian Day $1,732,510$

The visible new moons after these eclipses marked the beginning of the Hebrew months Sivan and Kisleu, if the modern Jewish custom be followed of talking the new moon preceding the vernal equinox as marking the beginning of the month Nisan.

But if Nisan was counted from the first new moon after the vernal equinox, according to the usage of the Karaite Jews, these moons would mark the beginning of 'Iyyar and Hesvan.

Annual
Sabbaths

- Hesvan
' Kisleu
- Tebet

1 Nisan from first The Pasch as first Modern Jewish ecusNew Moon after Full Moon after tom to avoid 10 ThisV.E. (Karaites) V.E. Ti falling next to

1 'Thurs. Apr. 12 ' Wed. Mar. 14 Sabbath. Thurs. Mar. 15 14 ' Wed. "I" $25 \times$ Tues. " " 27 , Wed. Mar. 28 15 ' Thurs. " 26 ' Wed. " 28 ' Thurs. " 29 21 ' Wed. May 2 ' Tues. Apr. 3 ' Wed. Apr. 4 1 'Sab. " 12 ' Fri. Apr. 13 'Sab. Apr. 14
1 'Sun. June 10 ' Sab. May 12 'Sun. May 13
6 ' Fri. " 15 , Thurs. " 17 ' Fri. May 18

1 'Tues. July 10 ' Mon. June 11 ' Tues. June 12
1 'Wed. Aug. 8 ' Tues. July 10 : Wed. July 11
1^{\prime} ' Fri. Sept. 7 ' Thurs. Aug. 9 ' Fri. Aug. 10
1, Sab. Oct. 6 , Fri. Sep. 7 ' Sab. Sept. 8
10 : Mon. Oct. 15 : Sun. Sept. 16 : Mon. Sept. 17
15 'Sab. " 20 ' Fri. " 21 'Sab. " 22
22 'Sab. " 27 ' Fri. " 28 'Sab. " 29
1 Mon. Nov. 5 ' Sun. Oct. 7 Mon. Oct. 8
1 ' Tues. Dec. 4 ' Mon. Nov. 5 ' Tues. Nov. 6
1 ' Thurs. Jan. 3 ' Wed. Dec. 5 ' Wed. Dec. 5* (A.D.32)

* Kisleu given 1 day less, to move next Day of Atonement from Friday

3) A.D. J.C.T.

Full Moon $=$ apr. 25.94 . Hence:
to Thursday.

Same Gregorian Calendar as for the year 1939.
Day of Julian Period for Jan. 1, 1939 is $2,429,265$
Day of Julian Period for Jan. 1, 1930 is 1,732,016
Interval equals 697,249 days, exactly 99,607 weeks.
Should be 30 Q, D.

There were Solar Eclipses (astronomical New Moons) on
Sunday, May 21, $1 \mathrm{hr} .36 .8 \mathrm{~m} . \mathrm{G} . \mathrm{C} . \mathrm{T}$. Julian Day 1,732. 156
Tuesday Nov.14, 0 " 49.4 m. G.C.T. " " 1,732,333
The visible new moons following these eclipses marked the beginnings of the months Sivan and Kislev. As the first full moon after the Vernal Equinox was also the Full Moon following the first New Moon after the Vernal Equinox, the Karaite and later Jewish usage agree in the positions of the months, aside from a possible one day's difference due to observation of the new moon, and the later practice of adding a day to Marchesvan to move the next Day of Atonement from Sunday to Monday.

Annual
 Feasts

Passover
list Un. Bread
Fth " "
Feast of Weeks
Trumpets
Day of Atone.
list of Tabor.
8th " "

The Pash as first full moon after first new moon after V.E.

A.D. 31

MARCH

APRIL

MAY
$\operatorname{may}_{1=21}^{21} 8 \mathrm{sec}$

On two connto this hook-up is corong:

1. In ancent times the Jews coned not have a passover im Moreh for thr barley

 thinon foclotithe the tentish day of fure nit

MAY

Solar Eclipses- Astranomical New Moons

Annual Ceremanial Sabbatis
3. Why cile madem Jewirh colurdar 3. jinst centuradem

Unfortunately this MS was addressed to me at the wrong address, so that it has come into my hands at almost the last moment before it must be returned. I have had to give hasty consideration, without time to comment on all points, and brief comment at best.

I was asked to jot on the margin of the MS any notation that occurred to me.

This I have done in haste and in very poor form.
My great criticism of Part IV is that its conclusions, or some of its conclusions, are CONTRARY TO THE CANON OF PTOLWM, which is the greatest bulwark, absolutely invincible, for our position on the 457 date. Any conclus ions contray to this must be wrong. This was the incontrovertible evidence set forth in the 1844 movement, and it still stands, after the archaeological discoveries of the past century, as evidenced by Driver: "The recently-discovered contemporgary monuments have FULLY ESTABLISHED THE ACCURACY of the Canon."

I briefly state some facts, and then give some evidence from the Canon, with the variations therefrom in this Part IV.

As is wellfestablished, and clearly set forth (as for example in Spicer's
" "Hand of God in History," pp 46-49), the Canon gives the date of the beginning of the Egyptian year in which a monarch came to the throne. It affords the earliest possible date for the mandan beginning of his reign, which might actual y begin on the last day of that Egyptian year. The years are reckoned as beginning with the first day of the first Egyptian month, Thoth, which in 747 B.C., the first year of the Canon, fell on Feb. 26. The year consisting of 365 days always, this new year's day fell back one day every four years, $\frac{1}{c}$ day per year. The reckoning is from noon on Feb. 26, 747. The first year of the Canon is from noon, Feb. 26, 747 , to 6 hours before noon on Feb. 26, 746 B.C. Nabonassar is given years 1 to 14, inclusive, Nadius, his successor, years 15 and 16 . W0. the fifteenth year of the Canon begins at midnight between Feb. 23 and Feb .22 , and is usually dated as beginning Feb, 22, $7 \overline{33 \mathrm{~B} . \mathrm{C}}$. Nadius came to the throne some time between $\mathrm{Feb} .22,733$ and $\mathrm{Feb}, 22,732, \mathrm{~B} . \mathrm{C}$.

Nabopolassar's reign, according to the Canon, occupied the 21 years included from the beginning of the l23rd year of the Cenon to the end of the 143 rd year. The l23rd year began on Jan. 26, 625 B.C. IVabopolassar, by the Canon, came to the throne some time between Jan. 26, 625, and Jan. 26,624 B.C. The 115 upon which I an commenting makes labopolassar's reign begin in 626 B.C. The theory which makes this king's reign begin in 626 must be wrong.

Nebuchadnezzar's reign, in the Canon, embraces years 144 to 186 inclusive from the era of Nabonassar. The 144 th year began Jan. 21, 604 . The king began to reign some time between Jon. 21, 604, and In. 21, $603 \mathrm{~B} . \mathrm{C}$. The manuscript upon which I an commenting makes Nebuchadnezzar's reign begin in 605 F. A theory which makes Nebuchadnezzar's reign begin in $605 \mathrm{~B} . \mathrm{C}$. must be

Amel Marduk's reign, by the Canon of Ptolemy, began sometime in the 187 th year from the era of Nabonassar, or between Jan. 10,561 and Jan. 10,560 . Our NS has him coming to the throne in 562 .C.

Nergal Sarusur, by the Canon, began to reign in the l89th year, which reached from Jon. 10,559 , to Jon. $10,558 \mathrm{~B}$. . Our lis has him beginning to reign in 560 BC.

Nabunaid, by the Genon, began to reign in the 193rd year from the Era of Nabonassar, which began Jon. 9, 555, and ended a year later. Our MS has his reign begin in 556 B.C.

Gambyses, in the Genon, is assigned years 219 to 226, inclusive. The 219 th year began Jan. 2, 529, and ended Jan. 2, 528 B.C. Cambyses, by this great document, began to reign after Jon. 2, 529. Our MS has his accession in the year 530 .

I think there is an inconsistency in the scheme upon which I om commenting which prevents still further contradictions.

If we adopt these conclusions, we sacrifice the accuracy of the Ganon of Ptolemy.

But this Canon is not only in harmony with the great archaeological discoverien of the past centyry, as witnessed by Driver and. many others, but it is confirmed by the faithfulness of the movements of the heavenly bodies. "There are no less than 85 solar, lunar, and planetary positions, with their dates, given in the Almagest, which have been verified by modern astronomers."

Reasoning and theory which give conclusions contrary to this invaluable document MUST BE WRONG.

This MS gives practically no argument for the date 457 B.C. from the Canon of Ptolemy.

That Ganon fully establishes our historical position on the prophetic dates.

Should not a document which is supposed to "go to the bottom" (Fart II, page 2, last paragraph) of the evidence for the date 457 B.C. give the full force of evidence from that document in whose "preservation as a precious remnant fof antiquity the hand of Providence can be clearly traced?"
"Providence . . . raisedup . . Ptolemy . . to record the chronology of the previous nine centuries, nd to associate it in such a way with the revolutions of the solar system as to permit of the most searching demonstration of its truth."
(Note, Part IV, p 3)
"In the 600th year of Noah's life. . were the fountains of the great deep broken up, and the windows of heaven were opened." Gen. 7:11
"Noah was 600 years old when the flood of waters was upon the earth." v. 6
It may be argued that the transition from the 600th to the 601st year of
Noah's life occurred between the beginning of the rain and the time when "the flood of waters was upon the earth."

Too narrow a basis is selected in this Note for its tremendous conclusions.
"And Noah was 500 years old: and Noah begat . . Japheth." It is too much to say that Japheth would be counted l year old when Noah became 500.

Gen. 5:3-5 checks without the theory put forward.
And Methusaleh does not survive the flood year by our accustomed counting of the years. Shem was born when Noah was 502 years old. Gen.11:10.
P. 3,
(Par. 1)
"Jewish reckoning is olways 'inclusive reckoning.'" This statement is not true. If it were, then Menahem would have been declared to have reigned 12 years. His reign was from the 39 th to the 50 th years of Uzziah, ten years and two fractions, and the fractions are not counted. $2 \mathrm{Ki} .15: 17,23$. Argument upon this premise is not valid.

Note 4 gives evidence that the writer reduces the 3 years of Dan. 1:5 to 1 year and two fractions. The Bible states that "at the end" of the three years they were to stand before the king.

And if 3 years in Scripture means 1 year and two fractions, then it may be argued that 1260 years means 1258 years and two fractions, 2300 years means 2298 years and two fractions, etc. Intolerable conclusions come from this theory.
in his 5th year
(P.4) The eclipse of April 21, 621 B.C./does not prove that Nabopolassar began to reign in 626. It proves that he was reigning on April 21, 625, and no more.
(P. 5.) The chart shows that the 4 th year of Jehoiakin was the second year of the 70 year captivity. Jer. $25: 9$ shows that the captivity had not yet begun in the early part of this 4 th year. But Nebuchadnezzar may have been already on his march, having left on the expedition in the 3rd year of Jehoiakim (Dan. l:I), and the record in Babylon dating the expedition from that year, and before he reached Jerusalem the 4 th year had begun and Jeremish had spoken the words in chap. 25.

The B. C. dates on this chart down to 586 B . C. are open to oriticism on a scripture basis. They are accepted by scholars today, just as they accept Rebbinical chronology, but former Bible students who accepted Scripture fully (like the Caraites) had a solid basis for 588 B.C. for the fall of Jerusalem. This is too large a subject for elucidation in a few minutes at my disposal, and it is irrelevant to the main point of consideration.
(p .7) anduainin It may be argued that the short reign of Jehoiachin reached from the latter part of one year to the early part of the next, upon the statement in 2 Chr . $36: 10$. NiN This point is of course a very minor item.
(pp 5-9) The B. C. dates for these synchronisms are all based upon the assumption commonly taken, that the synchronisms all refor to the beginning of Nebuchadnezzar's reign as counted at Babylon. They do not talee into account the old argument from Don. 1:5; 2:1, that the Jews in Palestine counted the years of Nebuchadnezzar from the time when he came against Jerusalem, three years before his great dream, while his father Nabopolassar was yet living and whose orders he was obeying. (Berosus, in Josephus, Against Apion, book 1, minaman par. 19.)
(Part IV, p 10)
The underscored statement fails utterly when applied to the reigns of the kings of Israel.

Jeroboam reigned 22 years to the 2nd of Asa. Nadab followed for "2 years" and was succeeded by Baasha in the 3rd year of Asa. Then Baosha is said to reign 24 years, to be succeeded by Eloh in the 26 th of Asa, whose reign of "2 years" and Zimri's 7 days was followed by Omri in the 27 th of Asa. And Omri's 12 years ended in the 38th of Asa.
 Ptolemy. It proves that Cambyses was reigning on July 16, 529, but does NOT prove that he began to reign in 530 . By the Canon he began to reign after Jan. 2, 529 B.G.
(p 18) A faulty argument based upon Neh. 1:1; 2:1; Ezra. 7:7-9. These scriptures merely prove that in the years of the reign of Artaxerxes alone there was no break in the count of the year between the first day of the first month and some unknown day in the month Kisleu; that when he came to the throne the date was somewhere between the first day of Kisleu and the first day of Nisan, the first month. And this is the meaning our people have always held.

Our publications, such as those by Elder Spicer, make very clear, with diagrams, etc., that Artaxerxes began to reign somewhere betweenr rame day in Kisle w,pwsithe Iast of Kisleu and the first of Nisan.

The Canon of ftolemy shows that he began to reign at some date between Dec. 17, 465 B. C. and Dec. 17, 464 B.C.
If his reign began between Dec. 17 and Jan. 1, then he began to reign in 465 B.C.
To establish that his reign began between Jan 1 and Dec. 17, or in 464 B.C. is our problem. In other words, we must prove that he did not come to the throne between Dec. 17 and Jan. 1, EXXXX

The month Kisleu sometimes reaches beyond Dec. 17. Did it in 465 B.C.?
If it can be proven that in 465 B.c. the month Kisleu did not reach to Dec. 17, the last gap is closed, in defense of the date 457 B.C.

There were solar eclipses, marking times of astronomical new moons, in 465 B.C. on June 20, 7:16 A.M., Greenwich Civil Time;

$$
\begin{array}{ll}
\text { Nov. 15, 10:19 P. M. } & \text { Oppolzer, Ganon der } \\
\text { Dec. 14, 10:40 P. M. } & \text { Finsternisse, p } 72 .
\end{array}
$$

The visible new moon following the last eclipse marked the beginning of the month Tebet, and the month Kisleu was entirely in the past.

H. A. Washburn
Route 1. Box 57-A.
St. Holone, Colif.

Hy doar Brother Mashburn:

Bldor Froom has passod on to mo tho oritiefsms that you maike concoming my portion of tho menuseript for this spocial comittoo, and I vas vory glad indood to got tham. Wo cortainly do not wont anything to go that would misropsesont tho truth, and I rocognize that ono dealing elosely at hand with suno of those problems is $12 k$ coly to freme his thought in such a way as to Ioave more or less tmbiguity es sanoone olse roads his thoughts. I only wish that you wore hore and wo could sit down and talk ovor the whole mattor togethor for I em sure thet discropencies and misundorstendings could be more quickly olfminatod thot why than by correspondence.

Howrover, lot me take up a fow of your points, snd if I do not make myself porfectly olear I will be delighted to have you ask more questions in ordor that I emy melco fuythor oxplanations. THy wole thought in tho papor mas to amphasizo tho acouraoy of the Canon of Ptolany rather than to throw any diseredit upon it. In rogerd to the menner in which Ptoleny records his roigna it is quite evident thet he does not traice into aecount the eceession yoar. Ho gives tho doath yoar of one king ontiroly to that rulor and begins the following yoas with the now king, celling it his first yoos. Then what aro you going to do with the datod tablets nhich have dates not only in the first yoer but also in the accossion yoor? This is a problom that has confusod many historians, and for thet roeson has causod a diseroponoy in the dates of thoso rulorge For ingtanco, you say that docording to the Cemon the Iirat yoar of Jiebumidus ie 555. If you will 2ooic in my tables you will find that I give it as his fixet yoers, putting tho accossion yous back in 556 along with the fourth yoar of Ilorgol Sarusur. Under Chart B on page 23 you will note that I. speoiflaaliy stato that ell dates begin with tho eccession year of the ling which is the seme as tho death yoar of the provious ruler. By this means I give an explanation to the accossion yoar. After carofvI study of the datod tabl did that are formd in tho erreavations I find thom to bo oxnotly in hermony with the requiranonts of the dudoeen method of rookoning the accossion your end the doath yoar as ono.

On page 3 of your roport you mention that we say Jowish rockoning is alveys inclueive roolconing. I should heve qualifted this by seying Judeoem reckoning is alvays inciusivo rockoning, for with ono excoption I think this is corroot. The Isreolitish roelconing soans to have boom based on on entirely difforent soheme as I thinis I could vory clearly show you wore you hero and could loole ovor my chronologieal scheno. On the basis of treating this accession yoar as found in the tables in the same menner as the Bible troats the accossion year of Wohoahes and Johoialdim es worked out fron the 13 th yoar of Jooseh dom to tho Lith yoar of Johoiactim, Jor: 25 t1-3, I find that it hemonizes exactly with the Canon of Ptoleny giving the first yoer of the roign of Mabopolassas in 625, the first yoar of Mebuchadnozzas 604 , ote *o the scme as you show in your lettor. As near as I can figuse it out thieso anolont ehronologists had to work out somo plon whereby fractions of yours could bo accountod fors, and it seams to me thoy have dono it in a ramarkeable and simple form. The Bible soems to be quite unifom in this mothod. I tried to oxplain this in a note but ovidontly it did not go into dotail onought so that it wes olear to you. Pouhape you could holp mo olearify it in a way thet vould bo simplo onough for anyono to undorotend.

I statol that Adem 11 ved 230 yoars and begat Soth. Doos that mean that it was in his 13200 yoar or in his 130th yoar that Soth wns born? If ho woro borm in the goor 131 A If and aftor his birth Adam 1ivod a sull 800 yoass ho mould not dio in 950 A . 1 , but in 931 A.ll. would ho not? Whilo this inoxemont might bo nogligeible If you wroro considering only one or two generations, in the considuration of ton betwoon Idem and the $\{1$ ood you mi ght 1 rum into a difforance of covoral yoars. On the othor hand as wo think of Admer asm being 1 yoer old in 1 A. 1 . so with his som borm in 230 ho vould be 1 yoar old in 231 A.llo, and thus tho chronologicel sequaace would not be in the least disturbed by any fractions of yoars.

You say, "It may be argued that the transition Arom the 600th to the 601st yoar of $1100 h^{t}$ tillo occusred botwoon the beginning of the rain and the time whon the flood waters was upon the earth. That is, I suppose, you have reforence to the 40 daye thet the rain whe upon the oarth bofore wo could say that the flood of mators uns upon the earth. Thon according to the 12th verse of Chapter 7 the seoond month refers not to the socond month of Hoah's 600 th yoer but to the second month of the year $\Lambda_{*} \mathbb{1 1}_{e}$, 1656 . According to your statenont his 601 st year mould boging wo will sey, about the lith month of the yoer, but would it not bo more simple and just as effeotive and in harmony with the manifest wroviding of the chronologieal schano to thints of his 600 th yoer as coineiding with the A.lls, yoas and them the 6th verse is ontirely in hamony with it rather then boing opposod to it. Tho only why, it soans to mo, that you conld hevo Hothusaloh not survivo tho flood by our acoustaned counting of the yoars would
be for his birthday to come within a month and 27 days of tho boginning of the yoar, whilo in my mothod he could be bown any time during the year.

You eny that iny chart ahows the Lith yoar of Johoinkin as the socond yoar of the captivity, and yot that Jor: $25: 9$ shows that tho captivity had not begum in the oasly part of this Lfth yoer. Ia it not corroct to start the 70th yoer captivity in the 3rd yoes of Hobuchadnezzar whon part of the veseols of the house of tho Iord and cortain of tho childron of Ierach wose talkom eaptives, Den. 1. $1 \mathrm{l}-3$, and doosm this solve the question of using the tablote dated in tho accossion year instead of the first yoer of̂́ Hebuchednozzar?

I would bo vory glad indood for your solution of the problan for 588 for the dostruction of Jorusalem and still hold on to the 21 yoars of Trabopolessorts reign and the eolipso in the 5th yeer of Mabopolessar. I am fust as ensious as anyone to secopt the soriptural statomonts, and I eni sure you roalizo that many of the echolere todey mete no offort to hemonize seriptural ettatements with aotual arohneologiool finds. I fimiy beliovo that all of the faots that wo may uncover, properly undoratood, wil2 not in eny way disprove the correct interpratation of soripture, and my burdom is to try and show the hamony that oxiets botwoon those two. I dontt benow of anyone in the past who hes triod to show the rensonableness that may elowire the propor intorpretation of these accession year tablets.

I agree with you that your coment on page 10 whore you say the underseorod sentence with rogard to the accossion your brooke down complotoly whan appliod to the reigns of the leings of Ispal. I will put a note in my papor elearifying thet point.

You soy on page 18 that the argument is faulty whon I use Ifohemiah and Eare to show tho Jows hed a civil your as woll as a seored youf. Do I undosstend from this that you thinks thoy did not have a oivil yoar but that thoir yoor bogan in the spring as the Bebylonion and Porsiom cellondar did? If so, whon did the Jowish civil yoor bo ing the month of Itswi come into offoct? y trizh
I noto from your lost paregraph you sey, "Our publications, such as thoso by BIdor Splcor, molke vory oloar, with diagrems, otece that Artaxrermos bogon to solm samowhere betwon same day in Kisloue posoibly the lest of Tislou and the first of Misan. but if you will rofor to Brothos Spicorts book again. "The Fand of cod in Mistory, "pagos 41 to 60° I think you will find him saying that the boginning of his yoerts roign must havo boon sonotime botwoon the 5th month and the 9th month. If IISsen, tho Ifret month comes in sequonce aftor the gth month how eould he begin the yoarts roign in any timo in that interval?

Having established what soons to mo tho reasonebleness of the mothod of applying the accession yeer principle I bogin with tho 7th yoar of combyses and worle right down through tho roigns of Dariac, Xorsaes and Arcaserzas appiying no new prinoiple and without any diensioulty como to tho conolusion shown on Chart B. Perhaps I should have added another chart with explanations similar to the one that I an enolosing showing that according to the Olympiads Korzces' cieath yeer whe somevhore botwoen July, 465 and July. 46, According to the Cenon of Ptolamy his death yoar was somevhere botwoon Docembor, 4,65 and Doconbor, 4,64 , and according to the rognel yoara worlcod out tho 21st yoar of Xerras and tho accossion yoar of Artearorzoes nould heve to be frou Aprils 46 hy to April L63. This mould givo from April to Julys 4,64, for the doath of Zorzes. Thus you see that that I have shovm is direotly in hamony with and amphesizes what has alroady beon shoum, excopt that I tm shortoming the interval in thitoh it is possible for Korzes doath to come.

I om afraid this is a long rembling lettor, but is thoro aro points thet I have not oxplasned pleaso urite egesin, for I m most anrious that this subjeect should be worciod in te wny thet would be plain to all and would be in porffoct harnony with tho feots. I em more tham glad to got the oritioisms of my brothrom on thoso matters before thoy aro put into book fome.

Earnertly and cordielly yours,

Canon "gives the death year of one wing entirely to that
 Vespasian [and Phetaxerxaes also] in the year before their actual accession. The

ruler, and begins the following year with the new King." their theory would necessitate placing the accessions of Alexander, Philip, Caligula

1
While the study of the Assuan Papyri has probably oleared up any possible point of controversy that might linger in the minds of any of our scholars, it will perhaps be en additional holp if answers to dofinite oritioisms of Part IV are given in dotail. As the most oarefully worked-out oritioisn was sont in by H. A. Weshburn, his comments as covering all that oame in, will be taken up point by point and answered. The quotations are from his comments.
> "Hy great oriticism of Part IV is that its conolusions, or some of its conclusions, are CONPRARY TO THE CANON OF PTOLEIY, whioh is the greatest bulwark, absolutely invincible, for our position on the 457 date. Any conclusions contrary to this must be wronge This was the incontrovertible evidence set forth in the $1 \mathrm{Bl} 4 \mathrm{move-}$ ment, and it still stands, after the archneological discoveries of the past contury, as evidenced by Driver: 'The recently-discovered contemporary monuments have PULLY ESTABLISHIBD THE ACOURACY OF THE CANON. ${ }^{\text {in }}$

I think it will be evidont to all that the study of the papyri hes not only proved the accuracy of the cenon, but hes also shown its hernony with other methods of reokoning, such as, the saros tablet and the chronology of the Bible.

$$
\begin{aligned}
& \text { - } 2 \text { - } \\
& \text { "Nabopolassar's reign, according to the Conon, ocoupiod the } 21 \\
& \text { yoars included from the beginning of the } 123 \mathrm{rd} \text { year of the } \\
& \text { Cmon to the ond of the } 143 \mathrm{rd} \text { yoar. The } 123 \mathrm{rd} \text { yoar bogan on } \\
& \text { Jen. 26, } 625 \text { B. C. Mebopolassar, by the Canon, came to the } \\
& \text { throne same time between Jan. 26, 625, and Jan. 26, 62l, B, C. } \\
& \text { The MS upon which I am commenting makes Nabopolassarts reign } \\
& \text { begin in } 626 \text { B. C. The theory whioh makes this king's roign } \\
& \text { begin in G26 must be wronge" }
\end{aligned}
$$

As shown by Chart G, 626 B. C., shown as the accession yoar of Nebopolassar on the tables of Part IV equals the yoar $626-625$. If the previous king died sone time during the 123rd year of the Canon, that is, betweon
the 27th of January, 625 and the 26th of Jenuary, $60 /$, Ptoleny would oall that year; the 123 r d, the first of Nlabopolessarts roign. As has been shown by the papyri, tho Jowish year in general lags behind the Ptolemaio dating about nine months. Acoording to Jewish and Babylonian custom, the doath year of the king is included in his reign, and is also oalled the acoossion year of the following kinge this has boon verified by the symohronisms shown in the first seotion of Part IV. The Jewish year from Tishri, 626, to Tishri, 625. (see ohart a) is, therefore, both the death yoar of Ashur-bani-apal and the accession year of Mabopolassar. This sequence of years has been proved by the papyri. In the same way, it may be shown that Hebuchadnezzar's first year in the Ptolemaic Canon was $604-603$, wile, as is shown on Chart G, his acoession year according to the Hebrew reakoning would be 605-604. In harmony with the double dating system proven by the papyri, these dates are carried down through the yoars as an Chart G, and oan be oasily verifiod by anyone.

The statement concorning "inolusive roackoning" made in Part IV should be confined to only the period under discussion and refors to the Judaite method, not the Israolite (the ten northern tribes) of listing the reigns of kings. It is a bit confusing to bring up the Nomahem problem in this conneotion because there are interregnums existing both in the lines of Judeh and Israel in the period just before Uzziah and just after Pekah that do not give sufficient ground for finalizing the discussion. It has beon olearly demonstrated in Part IV that the prinoiple of inclusive reakoning was used by Judah from the tine of Mabopolassar on 0
"Note 4 gives evidence that the writer reduces the three years of Dan. 1:5 to one year and two fractions. The Bible states that 'at the end' of the three years, they were to stand bofore the king. And if three years in Soripture means one year and two fractions, then it may be argued that 1260 years means 1253 years and two fractions, 2300 years neans 2298 years and two fractions, etce Intolerable conclusions come from this theoryo"

It is just as reasonable to reduce Daniel's three years, "to one year and two fractions as it is to reduce the three-year seige of Somaria to one yoar and two fraotionse 2 Kings $18: 9,10$. Deniel $1: 5$ speaks of an incident to take place at the and of three years and 2 Kings seys that Shalmaneser came up against Samaria in the 7th year of Hosea and "at the and of three years they took it, evem in the 9 th year of सosea." In fact, this reforence gives good authority for crowding the experience of Daniel into its roquired time.

> "The chart shows that the 4 th yoar of Jehoiakim was the 2d yoar of the 70 oyear captivity. Jer. $25: 9$ shows that the oaptivity had not yot bogun in the early part of this Lth year. But Nebuchadnezzar may have been already on his march, having lert on the expedition in the 3 d year of Jehoiakim (Dan. 1:1), and the record in Babylon dating the expedition fran that year, and before he reached Jerusalen, the Lth year had begun and Jereaiah had spokem the words in chapter $25 . "$

Joremiah 25:9 is in perfect accord with the experience recorded in Daniel 1. There were three campaigns in the overthrow of Jerusalem. The first was in the third year of Jehoiakim; the seoond, in his eleventh yoar; and the third, from the ninth yoar to the eleventh year of Zedekiah. Though given in the fourth year of Johoiakim, the length of the captivity is retroactive, beginning in the third year of Jehoiakim at the time Daniel and his companions were taken to Babylon. According to Chart G, this could be some time during the yoar $605-604$.

465-464 B.C. I mbolismic, then $1 N$ isan $=$ Mar 27
(Mar. 27 Lo Apr. 15) \therefore Kislen (30 day ${ }^{\wedge}$) $=$ Koo. 18 Lo tee. 17 ine.
7706: 1 hisan coned not equal Mar. 25 , as Bro. Washburn insisis, for it would nat only mahe the year 386 dayp loug, but it vould' bring the Vlinan newo yea begore the equinot, whieh in that year
$465-464$ B.C., if common, then year $=355$ day (aper. 2510 apr.is)
"Popysins 13 " call for apur. 25 as 1 Nisan in spaning of 465 . then Kislen and Nestan boile equal 30 dayp and

Kislen $=$ Qee 18 10 $\operatorname{Jan} 16$. Wislen proo of does not po an . Q.eisif.
"The B. C. dates for these synchronisms are all based upon the assumption commonly taken that the synchronisms all refor to the beginning of Nobuchadnezzar ${ }^{\dagger}$ s reign as counted at Babylon. Thoy do not take into account the old argument fran Dan. 1:5; 2:1, that the Jews in Palestine coumbed the years of Nebuohadnezzar from the time whan he orne against Jerusalem, three years before his great dream, while his father, Nebopolassar, was yet living and vhose orders he was obeyinge (Berosus, in Josophus, Against Apion, Book 1s po 29)."

To make Josephus imply that Nebuchadnezzar cane and took Daniel captive three years before his droam doos injustice to the olear statements 2.s follows: Dan. 1:1, in "the third year of Jehoiakim" Jer, 25:1-3s "the fourth year of Jehoiakim 'equals' the first yoar of Nebuchadnezzar;" Jor. 36:9; "the fifth year of Jehoiakim" must equal the second year of Nebuohadnezzar; Dan. 2:1; "in the second year of the roign of Nebuchadnezzar." A careful study of the references in Josephus will surely convince anyone of the synohronism of his account with the above Biblical references.

- 7 -
"This eclipse in the 7th year of Canbyses, July 16, 525 B. C.,
fully oonfirms the Canon of Ptolany. It proves that Cambyses was reigning on July 16, 529, but does MOT prove that he begen to reign in 530. By the Cmon he began to reign after Jan. 2, 529 B. C."

According to thecanon of Ptolemy, the eclipse of 523 occurred in the 7th year of Conbyses. This yoar of the Canan began Jon, 1, 523, and olosed Dec. 31,523 . In the "Cambyses 400 " tablat, it is also recorded as having occurred in the 7th year of Cambyses. According to the Babylonian calendar, this year ran from April, 523, to April, 522, as demonstrated by the papyri. Howover, the sequance of years as proven by the papyri, domands that the 7th year of Cambyses, according to the Hebrew reckoning, shall extend from the auturin of 523 to the autumn of 522. The date, therefore, of the eolipse according to the Hebrew reokoning, would be the month of Tannuz in the sixth year of Darius. (See Chart a)
"A faulty argumont based upon Neh. 1:1; 2:1; Ezra 7:7-9.
These scriptures merely prove that in the years of the
reign of Artexerxes alone there was no break in the count
of the year betweon the first day of the first month and
some unknown day in the month Chisleu, that when he cane
to the throne the date was somenhere between the first day
of Chisleu and the first day of Nisan, the first month.
And this is the meaning our people have always held.
"Our publications, such as those by Blder Spicer, make very
olear, with diagrans, etco, that Artexerxes began to reign
somewhere between the last of Chisloy and the first of Misan.
The Ganon of Ptolony shows that he began to reign at some
date betwreen Doc. 17, 465 B . C. and Dec. 17, 464 B. Co If
his reign began betweon Dec. 17 and Jan 1, then he began to
roign in 465 B. C. To establish that his roign began bo-
twom Jan. 1 and Deo. 17, or in 464 B. Co, is our problem.
In other words, we must prove that he did not cano to the
throne between Dec. 17 and Jan. 1.
"The month, Chisieu, sometimes renches beyond Dec. 17. Did
it in $465 \mathrm{~B}, \mathrm{Co}$? If it can be proven that in $405 \mathrm{~J}_{0} \mathrm{C}$. the
month, Chisleu, did not reach to Dec. 17, the last gap is
alosed in defonse of the dato $457 \mathrm{~B} . \mathrm{C}_{0}$
"There wore solar eclipses, marking times of astronomical
new moons in $4,5 \mathrm{~B}$. C. on June $20,7: 16$, a.mer Greenwich Civil Time
$\times 115.53$ Move 15, 10:19, poime, Oppolzer, Canon
x $1115^{\circ} .04$ Dec. $1_{4}, 10: L_{0}, p_{0} m_{0}$, der Pinsternisso, p. 72.
The visible new moon following the last eolipse marked the beginning of
the month Tebet, and the month, Chisleu, wes ontirely in the pasto"

The papyri prove that the system of counting Chislou before Nisan does not apply to Artacerxest reign al one, but is a general custom applying to any king's reign. In the 2lst year of Xerxes, Papyrus "B" states that the 18th of Chisleu symohronizes with the 17 th of Thoth in the lst yoar of Artixerxes, and as proven by the computation, this was Jon. $2,4,64, B, C$ As the synohronism is exaot, it proves Brother Washburn's contention feulty all the

Prof. Harry Weshburn, St. Helena, Calif.

Dear Professor:

Enolosed are a few Tables and some manusoript copies on these subjeots under disoussion. TABLE \mathbb{N} was made out to show the Committee what would happen to the transe lation of the moon in Jerusalem if the loth Tisri were made to fall with its greatest portion of time on Ootober 22; the Ist of Tisri, in like manner, on Ootober 13; and Nisan 14 on the day of full moon, May 2, that is, Jerusalem Civil Time. Of course, with one coordinate fixed, the whole series follows. There is a man here in Washington who wishes to make the oivil dates in Jerusalem exactly coincide with the oivil dates of the "seventh month" in Boston. The international date line, of course, makes this ime possible. The Tisri New Moon day, which we see in Jerusalem on Ootober 13/14, beginning at the second sunset after conjunction, is the latter part of the same new moon day whioh ocours in Boston on Ootober 12/13, beginning the first sunset after conjuno tion. The Millerites seemed to understand this, for they mention " 11 a.m." as the coe incident time in Boston corresponding to the sunset beginning of Tisri in Jerusalem, On acoount of the fact that the position of the moon is suoh in Boston that her new moon day oan happen a sumset earliar after conjumotion than in Judea, are we not justified in saying that this Ootober inew moon day really began in Amerioapwere the "seventh month movement ${ }^{n}$ was consummatedasit had no oounterpart elsewhere-corossed the date IIne as Tisri 1/Ootober 14, coming back to Jerusalem as the same, and coinciding with the same date there, whioh the Millerited statements point out, in the end returne after, ing to Boston ready for $\mathrm{Iisri} 2 /$ Ootober 14, the logical aivil date. Certainly we oan ${ }^{2}$ not make Tisri $1 /$ Ootober 13 in Boston follow Tisri 1/Ootober 14 in Jerusalemo This It is the paradoxical trouble with Jewish time is of long standing. It gave rise to the double other new moon lays after the diaspora. It oaused the fierce polemio between the Rabbanites way aroud and Karaites in the loth oentury, who fought for a prime meridian--Jerusalem or Babylon. In the end neither got it. According to the Jewish Enoyolopedia, the Jewish fesc tival day with its oivil date--I doubt the festival part-mstarts 90 degrees east of Jerusalem. That would be 60 degrees west of the dey line. The festival date line, if we may oall it suoh, could not have a permanent meridian, on acoount of the constant ohange of the phasis. This "osoillation" of Tisri, as Sidersky calls it, beoomes a most interesting factor in relation to our problem. I wish that you would give it close study. Correct me if you think that I am wrong. I have disoussed this with Mr. Draper, Assooiate Astronomer at the Naval Observatory, a number of times. He has taken keen interest in 1t, and of'ten says. "Do not ohange one detail of the "Clook Chart, for you have it just right."

Technically you may be oorreot about the aotual onding of the 2300 years, espeoially in reference to Jerusalem, but practically, I would say not. The Millerites had to piok up time where they found it, and that wes in New England. Furthermore, the revival that they represented--the short, quiok, last featuros, ${ }^{\circ} \mathrm{f}$ the seventh month movenent-owas a fit counterpart to the revival of Ezra whioh at the beginning started the propheoy in Jerusalem. The time came in the fall of 457 B.C. for the 2300 years to begin. Eara was correoting the terrible domestio confusion which had oome ine to the oamp of Israel. We do not know that Israel could observe the day of atonement at that time; probably not. But when the day oame, the propheoy began. This was in Jorusalem. It seoms as if, in the finishing of this longest period of prophetio time, America took the leading part. We have no record at all that any of the European ohurches took any part in the "seventh month movement." They soaroely lenew anything of it. Blder Froom has gone into this thoroughly, and is of the same opinion. H_{e} will add to his report ooncerning this point, I think. You oan see what it would have moantic if the Adventists in Burope had acoented the loth day of Tisri as of October 23 , whit those in Amerioa set the day as Ootober 22. That is the way things go at times. But in the great providence of God, it would seem to me that the final finish oame in one country only, where the date wes one.

TABLE V is enclosed -am so sorry that you did not get it. It will explain, I think, how I reokoned the translation periods. I had no positions of the moon for the first century-only the Ginzel. Tables. The oalendar itself, when laid out, produoes all the translation times. I followed my Postulate, and reokoned the length of the year by the paschal moons as pointed out by the barley harvest.

I have gone over the references you mention. On page 51 I have not made myself olear- - I see that. It was the Nisan moon on the 13 th that is the orux of the argunent. However, all but four of the other full moons in 1844 fell on the 13th of the month in Jerusalem. I was interested when I saw that the Tisri moon fell in line, but I did not make it plain. Thanks for telling me. Table IV was made out for the purpose of showing that the translation periods keep step with the motion of the moon. They ohange gradually in length from moon to moon. My figures may be wrong-I do make mistakes at times, for it is almost impossible not to. Although many of the moons are on the $15^{\text {th }}$ there are always some, here and there, that are not. The Misan moon is the impertant one. Pable IV has all the Nisan moons on the 13th; the others should oome along as the oalender points out. As I oan get time, I will oheok this
over, apd let you know how the figures work out. It surely is very kind of you to take, suoh keen interest in the details of this problem. I appreoiate it more than I oan tell you. There are very few in this oountry who have the ability to do what you have done in oriticizing our report.

If you have time, and find it convenient. I would surely appreciate further oritioism from you in regard to the matter of laying out the Jewish year after the Mosaic pattern, shall I call itz If you read over Sidersky, you will note that he claims there were no years in the first oentury either 385 or 353 days long. This he says is on account of the postponements of the modern Jewish oalendar, whioh did not exist in the early times. I also have found this to be true when reokoning the length of the vear as from paschal moon to paschal moon. I never find any yoar either 385 or 353 days lngg. We are dependent upon knowing the length of the year in order to dee termine the number of days in Hesvan and Kisleu. You will see from the Tables how the calendar works. I would greatly appreoiate, your attention to this, if you have time. But please take your time, and do not worry. Everything that you have sent us has been valuable. Before I make my final report to the General Comittee I would like to know that we are in harmony if possible. It will mean muoh to me.

Am sorry to know that you are not in good health. Please do not hurry yourself on my account. Take plenty of time. That is our best asset, is it not?

> Yours very sincerely.

Sept. 19, 1939.
Takoma Park, D.C. 220 Park Ave.
P.S. At present I am translating for Elder Froom in the General Conferenoe building. When you write, use the address given above.
G.E.A.
P.S. ${ }^{1}$ If I have not already sent you the Jewish year in oalendar form for the Boston meridian-aa counterpart of the Jerusalem Table J herin enolosed-aplease let me lenow and I will send one on. It seems as if I had sent you a copy, but I am not quite sure。
G.E.A.

```
Boute l, St. Helena, Calif.,
August 29, 1939.
```

Miss Grace Amadon,

Batもきe-Sreek

Takoma Park, Walshington, D. C.

Dear Sìíter,-

You note from above error the persistence of old time recol-

lections.

I very much appreciated the letter which I received from you last week, and the data which you enclosed. I should have written sooner, had I not been called away from home, and I am now writing before a hasty departure, so that I cennot write a.11 that I wrould be interested in putting upon paper.

With reference to the data in your letter, there must have been an error in the dates of perigee in 1844, at least in June, and I think also in August. Perigee could not fall on June 13, Aug. 21 and Oct. 13, in any one year. When you look this up, please get the moon's latitude north or south of the ecliptic, not the declination norh or south of the equator, which was given, presumably for $0 \mathrm{hrs}$. , on the dates of conjunction. Or did you compute the declination for the moment of conjunction? In giving the latitude, kindly indicate the precise time. And qive me one d ate of Ω, and the Lat. 14 dayslater.

I should greatly enjoy working on such problems as these, had I access to a library.

Yyoa judaed
I infer from your letter that A_{A} held the full moon of 1 lisan of on the 14 th ; I think the testimony of Aristobulus sufficient to establish that in the month Nisan the full moon fell on the 13th.

I doubt very much whether the Jews anciently followed undeviatingly the 30-day, 29-day, 30-day, 29-day length of the months. They could hardly have done it, and begun their months upon the phasis of the moon. At a time when the new moons would appear at Jerusalem as they did at Boston in 1844, I think the oncient Jews would heve given 30 days to Elul, beginning Tisri at sunset after the moon was visible, and allotting only 29 days to Tisri, would begin Hesvan as your chart showed, at phasis.

A statement in your letter would not be always true: "In actual performance, when the paschel moon is placed on the l3th of Nisan, the other months run along, placing their full moon on the 12th to the 14 th of the month."

I understand that you have this reult, by assigning the customary modern lengths to the months as in the modern Jewish calendar; i.e., alternating 30,29 days. In 1926-7, the full moon would fall on Nisan 13, Iyyar 12, Sivan 12, Tammuz 12, Ab 12, Hilul 11, Tisri 12, Hesvan 11, Kisleu 12, Tebet 11, Shebat 12, Adar 12.

Throughout the year, in such a case, the month would not begin until the moon had been visible on one or two evenings previously, the translation period being 4 days for 8 months, and 3 days for 4 months. In the latitude of Palestine, four days is never necessary before a phasis of the moon. Only in northerr latitudes, such Danzig, where Hevelius lived, would a four day translation period ever be necessary.

I mention this simply because of my interest in the astronomical facts, for I do not suppose this enters into the possible publication after the study is completed.

And the suggestions I made regarding expressions in the manuscript were only such as to safeguard it from adverse criticisms by enemies, and I made them all in a friendly spirit, not to find fault.

There is another expression in your letter which I fear is jumping at a. conclusion.
"We have no record that the Millerites actually observed the moon on the evening of the 12 th , but even so, though Boston was a northernmost part of Adventism, yet the moon could doubtless be seen in the south and west." There was 2. similar remark in Brother From's letter.

But our opponents would not concede that there was no doubt. As a matter of fact the moon would cefa;inyly not be visible anywhere in the United States. The moon was only ten minutes from its setting point at sunset at Boston, that is, ${22^{\frac{1}{2}}}^{\circ}$ on a parallel of declination, or less than 2° vertically above the horizon. At New Orleans, $1 \frac{1}{4}$ hours west of Boston in longitude, the moon would not be much farther east of the sun than it was at Boston. Even at perigee the moon gains only 140 on the sun in longitude in 24 hours, and in $1 \frac{1}{4}$ hours it would move only $\frac{30}{4}$ further from the sun. The moon was certainly invisible there.

letter:

Much more consequential, I think, is another expression in your
"The seventh-month movement was strictly an American movement."
That statement by itself is all right. But its setting gives counternance, I feel, to an erroneous idea. It seems to be part of an argument that the tenth day of the seventh month was from sunset on Oct. 21 to sunset on Oct. 22 at Boston.

Now the prophecy of the 2300 days was not an "American" prophecy. The 69 weeks were not weeks in America, beginning and ending there. The midst of the week when the Messiah was out off, was a day in Palestine, not in America. The 2300 days began, the 70 weeks began, with a certain time in Palestine. They ended at a certain time in Palestine. The 2300 days began at a certain time in Palestine, and ended exactly 2300 years later, as time was measured in Palestine, not in America. < When the luth day of the seventh month came in Palestine, (\| the 2300 years ended, and not before. $>$ That lath dey/ of the seventifnonth, as I showed on diagram sent to Brother Prom, began at 10:15 AM Oct. 22, at Boston. That was the moment, Boston time, when the 10 th of Tishri began in Jerusalem. The 2300 years could not have ended a minute earlier then that. Oct. $2 /$ sunset indst be given up.

The enclosed sheet contains simple statements sufficient to show that Oct. 22 was the correct day for the American believers to select. We do not need to use any presumptions.

I have had to write hurriedly, and may not have made myself plain. I have not kept a copy, so that my words will have to be quoted to me if I am to answer inquiries regarding them.

Part V argues for a visible new moon a t Boston, on Oct. 12, 1844, at sunsset. This was an impossibility. (See computation and diagram) And this argument is not necessary.

All that needs to be argued for is:
That Oct. 22 at Boston, more than any other day, coincided with the 10th of Tisri; at Jerusalem.

That Oct. 13 at Boston, more than any other day, concided with Tisri l;
That sunset, Oct. 13, at Jerusalem, marked the beginning of Tisri 1.

For such a sufficient argument

Ecliptic of date
at Jerusalem

Equator at Jerusalem
Lat $31^{\circ} 46^{\prime}$ North

Scale: $\quad 4 \mathrm{~mm}=1^{\circ}$

1844
Moon at sunset oct. 13, 5:30 PM 10% above Horizon

VISIBLE

Setting 48 min after Sun, 6:18 PM

Horizon
Moon at sunset
Oct. $13,5: 30 \mathrm{PM}$
10% above
Horizon
VISIBLE
Setting 48 min
after Sun, $6: 18$ FM
Horizon 1 Po

Moonset
Moon at Sunset, Oct. 12, less than above horizon, invisible

$$
\begin{aligned}
& \text { setting at } 5: 30 \mathrm{MM} \\
& \text { Oct. } 13,1844
\end{aligned}
$$ at Jerusalem

For such a sufficient argument
we do not need an extension of the Nisan 13-full moon postulate(based on Aristobulos) to apply to all months, including Tisri.

Such an extension involves occasional contradiction to nature itself (affirmation of an early phasis of the moon when it is physically impossible).

The published argument in 1844 is as sufficient today as it was then. Scholarship will accept the statement, "The new moon being probably seen in Judea on the second evening from its change, when it would actuarily be one day and 17 hours old," as reason for counting the month as beginning at Jerusalem at sunset, oct. 13. 014

We need no further argument. And we must not adopt any argument or reasoning which involves contradiction.

ADJUSTMENT OF THE ANCIENT HEBREW CALENDAR WITH THE NATURAL YEAR.

Every third year must have an extra month of 30 days, a łeap year of 384 days Once every 19 years a leap year must be added after an interval of only 1 year intervening.

After ten such 19 -year periods, with 7 leap years each, another leap year, making a 19-year period with 8 leap years, two of them after only 1 year intervening between leap years.

Then after 950 years, a 19-year period with 9 leap years, 3 of them with only one year intervening inmpuam after the previous leap year. No further thought about any extra leap year for 316,667 years.

In practice, the state of the barley harvest might hasten or postpone a leap year, but the average would be as above, for the harvest is controlled by the natural year.

In practice, also, if the visible new moon governed the beginning of months, the months would not invariably alternate between 30 and 29 , but that would be the average. Average length of lunar month, 29.530588 days

Prof. H. A. Washbuxno $_{0}$
Box 57 A, R. $R_{0} I_{2}$
st. Helena, Cal.
Doar Prof. Wa,shbuxm:
Since writing you last wooks. I have had opporiunity to study further some of the material that you sent Elder Froam, although I have not yot given it a.ll consideration. Fierein is onclosed the rese exence from Axistobulos. It is talcen from Caspari. This was the suggestion that gave me the olue to the position of the paschal moom, a.lthough Geminus also implios the seme idoa; thon ho says that the eamliest full moon is on the 13 th of the month. He gives the linits as Excm $23-17$. I have not yet found any full moin so late as the 17 th of the lunar month. If you have, ploase tell me.

I am sorry that you got the idea that I vishod to place the full moom of each month on the 23 th. $14 y$ PABLS V states that the pasm chal moon on the 23 th $\mathbb{N}_{\text {isan }}$ is the hypothesis of POSTULATE 1 . This is the only hypothesis that worlcs, I say in ny roport. If the paschal mocm is placed on the Ifth \mathbb{I} isan, the translation poriods rum shor't. On the olook oharro-miegrem IS and pemyou will note that the October full moom is on the Ilith in Boston, although it is on the 23th in Jervsalm. This, howover, is not the postulate, which onIy rofers to the $\mathbb{I}_{\text {isan }}$ moom, which aftor a.l., sets the Uevish yoas.

You mention the date lino as bolng transforred from the PariIfc to the Atlantic ocears. Enelosed are a fow paragraphs on the date line question. If you have time to somd me a critiloism om this. I would very ruch approciate the favor, and will sond you baok a finishod copy after tho nowintttee gets through with the subjeot is you care for it. It is slow work vith the committoe, for these men have so much to do, and after a.11. the argumonts are difitoult. Porsonally I appreciate sincerely the interest which you have taken. You have done a lot of fine detailed work. Tho firest papers whifh owne from you just happoned to be left on my desk for an hour or two. I copted every word for caresul study. At that time I had just came to Washingtom, and had not yot solved the problam concerning the first contury moons.

This dathing of the festival days in Jorusalem and Now Eng-land-athe faot that in this instonce of 1844 they are on different days-o has sot minds thinking. I an enciosing, an answor to the assertion that T1smi 10 must be on the same dey in Jorvisalem as in Boston-00tober 13. PLease eriticise the answis, especially the second page, vinere the three conjumotions are compared. I took a.ll the data from the British Ephemoriso

David Sidersly's Chronology of tho Jows has boon of groat holp to us. It was a Jrench artiele, 93 pages longe We had it translem tod into Bnglish. The Jewish calondar is considerod in detail. If you would care to have a copyo I believe that we can spare one. Kindly let me lnowe

Please do not feel that you heve to husry in reference to anything that I have sent you, but if you do have time to give me the critioisms, I will very much appreoiate the fevor. I have dcne a.ll my worle on this report at the Naval Observatory, and hnve had the continual heIp of the Dirootor, the Assooiate Astronomers, and the Time Service Dom parimont. The lieutenants took keom interest in the date line questiom, and one of them, boing a jew, was indeed excited over his calendas.

Please let me thank you parsonally for your
 interests. Tours very sincerely.

Theologleal Seminaxye
 Takome Pariz.
 Soptamber 2, 1939.

Prof. H.A. Washburn,
Bos 57 A, R.R.I
St. Molena, Cal.
My doar Prof. Washburm:
This morming Eld. Broan sent over to my roam a recent letter from you in regard to the position of the moon in 18l,4, and also your careiully made chart built up on the basis that the full moon alvays occurs on the 23 th of the month.

Although "Postulate $I^{\prime \prime}$ is a different hypothesis from the one by which you have work your chark, yot your chart is most valuable for roforence, inasmuch as this very plan for the Jevish year has been suggested by a. oritioism that was forwarded to our camittee. The hypothesis of "every full moon on the 13 th $^{\prime \prime}$ thrusts too many cowordinates into the plan of the year. We can only have one co-ordinate for the sum, and one for the moons consequently it would be impossible to have 12 or 13 months fixed at the seme point by the moon. In actual perfornance, when the paschal moon is placed on the 13 th of \mathbb{N} isan-including the after-sunset conjunctions 2l.so-mthe other months run along, placing their full moon on the 12 th $t \mathrm{c}$ tho $12,0 \mathrm{ik}$ of the month. I woricod out a period of seven or eight yoars for the time around 284h. giving the Jowish year its loagth as indicated from full moon to full moom, and making tho Adax-Veadar period 59 days, as laid dova by chronology. This Sidersly says is the true Bible year for the first centuxy, and this we understand the M111erites tried to follow. Into suoh a ealendar thic Polish authority on tho Jowish yoar seys that no yeass 385 or 353 days lang appear. Accordingly I loft them out, and made the yoars always just as the moon indicated.

Hy chart shows that alveys the paschal noon fell on Nisan 13. I amin wording on a foux-ninetoon-ycon cycle poriod of the fizwt contury, a day-byday hooloup of Jewish time to the Julian calendar. I talce the length of the Jevish yoar from the moon's performence. So far all the paschal moons fall om Misan 13. lify concIusion is thus far that

1. If the paschal moons were placed on the Hith Nisan, the translation periods would run short in some years.
2. If the paschal moms ware placed in some years on the 13 th and in some yoars on the ${ }^{2}$ th, then the Jewish yoar would be distressed in its longth, and vould fale out with the 19-year cycle

For same time I have wishod to write ycu, ind. heve felt, that after all your interesting and helpsul vork a lotter should come froa me personally. I think that your eriticism of the word "phasis" in connection with the Bostom translation on October 13 in 1844 is woll taken. We have no record that the IIIllerites actually observed the moom on the evening of the $12 t h$, but even so, though B_{0} stom vas a northern nost part of Adventism, yot the moon could doulbtless be seem in the south and wost. Howover, ovon that fact does not make so much differonce, for the first day of Tismi had to staxt--its time had come. This is conffrmed by the adjacont translations of Septamber and Novenber, at which time the moon could easily be seen. The perigee seems to be the one inm portant factor accelerating the moon in each one of these months, other factors of the three montionod by Hevelius wrere nogative. But in September and Novamber the phasis occurred at the second sunset, the moon setting, in the earilest month about 34 minutes after the sum, and in IIovember, neariy an hour after.
 all three translations occur at the second sunset. Enolosed is the rule which the Karaites follow in such a case (Kolcisoff). I also onclose the calendar for $18 /{ }_{l} /$ s made out on the basis of Positulate I, starting with the year 1838. I am interested that you also have boon studying the date line. Thore is a Iunar date line as also the solar. It is the lumar date line that the phasis of the moon maries out on the meridian of Boston. As soom as my chart is finishod on this point I will sond it to you. Eld. Trocm is having a wedding at this time. He will soom waite you I am certain. If it is convenient I shall be glad to recoive further critieismey the Iours very sincerely,

Route I, St. Helena, Oalif.,
Sept. $\mathbf{4}$ b, 1939
Dear Miss Amadon,-
I have had delight in your letters, the second did $^{\circ}$ which reached me about a week after I mailed my last letter to you, but coming by mainh air mail I do not know whether you had received my letter before writing this.

EPlease exercise charity in judging the typing of this letter. My nerves are so weak that I notonly make many mistakes, but I have not the nerve energy to rewrite anything. To attenpt this means no letter at all. I also have to wite on different typewriters with different shift keps, which I cannot always keep in mind.)

Inasmuch as some of my inquiries were not answered in this last letter, I have delayed writing again, supposing I might be questioning something whi oh would be satisfactorily explained in the next letter.

Let me state again very plainly that I do not write to find fault. I have in mind all the time what our opponents may say, ad with truth, in opposition to positions which might be published by our people. While being plain enough to be understood, I have tried to remember courtesy.

As I do not have time at this moment, about to go away from home for a few days, to compose the letter logicaaly, I will write a number of somewhat unrelated paragraphs, as the matters come to my mind.

> mim

I would be very thankful if I could read Sidersky's article, as you intimated in your letter.

While it may ndt have been intended, Part V certainly gives the impression, by three counts, of on extention of the "Postulate 1 " to make the full moon of each month fall on the 73 th day:
(a) Page 61: "One more bit of evidence." "Placing this full moon date (Oct. 26, 1844) on Tisri 13, on the basis of the same postulate as for the Nisan moon."
(b) Table IV, page 33, column 4, "Period from Conjunction to Phasis." These translation periods as given cannot be obtained by applying Postulate 1 only to Nisan, and then reckoning the other manths as beginning at intervals of $30,29,30,29$, days from Nisen 1 . If that were done, then the trenslation periods for Sept., Nov., 1930, and Jan. 1931, would be $2 \mathrm{~d} 6 \mathrm{~h}, 2 \mathrm{~d} 5 \mathrm{~h}$, and 16 2 h , instead of $3 \mathrm{~d} 6 \mathrm{~h}, 3 \mathrm{~d} 5 \mathrm{~h}$, 2d 2 h , as given in column 4.

Column 4 seems to reakon from conjunction to a theoretical phasis, which works out to tha be from the assumption of the full moon falling on the 13th of the month.

If the time were computed from conjunction to the true phasis, first appearance, d the moon, then a rule would have to be laid down as to what altitude above the horizon the new moon must be at sunset in order to be visible. No such rule is laid down. Then the actual height would have to be computed trigonometrically for each month, taking into account the moon's varying heliocentric latitude (not declination), the changing inolination of the ecliptic (which is a problem in spherical trig. each month), and the moon's longitude from the sun.
(c) I of Diagram C, p. 3la. Translation periods fow 1930-1-2m3-2. This

Abstract

ragged curve is like the one I obtained from the asamption of full moonloth day in every month, and charted, in that it contains the error of frequent late phases near the vernal equinox, and sometimes impossible early ones near the fall equinox.

Note 5, page 34, mentions a "curve covering years, in which the Translation Cycle was figured according to Postulate l, Table V." There was no Table \rangle in or accompanying the MS sent to me. If there is one, it may answer some of my questions.

QUERY: Did someone go through all the long trigonometrical calculations necessary to determine the time of true phasis at Jerusalem for each month in 20 years, each time with a different inclination of the ecliptio, a different longitudinal distance from the sun, and (especially) a different heliocentric latitude of the moon? And, if this was done, WHAT ALTITUDE of the moon was assumed as the minimum for visibility at sunset? Answers to these questions will help me to understand your findings.

THANKS for the Greek of Eusebius, in the citation from Aristobulus.
-

The Karaite rule regarding short translations. That rule as stated in your letter is proved perhaps, as is said of rules, but its exceptions. That rule regarding 22 hours is good for Palestine, nearly all the time. But there are rare instances, at least every 9 years, when the moon would not possibly be visible in 8 hours. This would bethe case in fall months when the moon was in extreme south heliocentric watitude. The Kariaite rule would not go oontrary to nature, if the Karaites were consistent with the most ancient usage, as I suppose was the case.

I wonder if anything I have written appeared as though I was arguing against the date Oct. 22. The answers look as though I had been so understood. This is not the case. I think Oct. 22 was the correct date for the Millerites to seleot, eiven if they had come to a correct conolusion by incorrect means, and we ought to to try to justify them by any incorrect reasoning.
 70th of Tisri in Boston.

The midst of the 70th week was on the 14th day of Nisan in Palestine. It began ond ended with sunsets at Jerusalem, not at Boston.

Just so certainly, the end of the 2300 days, $\$ 813 \mathrm{I} / 2$ years later, ended on a day limited by two sunsets at Jeruaalem, not at Boston. The first sunset at Jerusalem was at 10:15 A. M., Boston time. The 2300 years had not ended 0ot. 22
at sunset, Oct. 21, at Boston, as advocated in Part t, and represented on Diagram. F.

Therefore the day beginning at sunset 0ot. 21 at Boston and ending the nexf sunset cannot be cal led the day on which the 2300 years ended. These 2300 years ended on the day which.began at 10:15 A.M. Oct. 22, at Boston. Diagrams and argument should harmonize with this fact.

Prof. Harry Washburn,
St. Helen.
Cailformia.
Dear Brother Washburens

Elder Prom recently showed your card in reference to the question of short translation periods, and suggested that I write out my viewpoint in regard to this. So here it is.

We do not lack authoritative records of short translation periods of the moon on various meridians. Enclosed are a few instances - Africa, Palestine, Odessa, Babylon, Egypts, te. Howover, the ancient Jews, according to Sealigor, Gamaliel II, and others, did not employ the earliest phasis for startIng thole months. Jews, Samaritans, Arabs, Chaldeans, and Damascenes were In agreoment concerning this chronological feature. The epact words of Scaliger are as follows:
"But the Jewish, Arable and Samaritan now moons commonly exceed the size of the phasis, so that the Civil new moons of the lunar months are of three finds: the Attics, from the conjunctions the Calippies, from the waring moon [that is, the earliest phasis]s and the Jews, Arabs and Samaritans, from the shape of the moon on the third day. I say" (Scaliger, "De Inendatione Temporven," po).

Thomas Godwys, writing in the same century as Scaliger, further explains his statement:
"In the first, the moon was quite daring in the second, it did open itself to receive the sunbeams in the last. it did appear corniculate, horrid ${ }^{\prime \prime}$ (GodFyn, Thames, "Moses and Aaron, RItes," pe 122. Twelfth Edition, London, 1685).

The "horned" moon is also called the "second" moon, because, according to Hovelius, it does not usually appears until the second day after conjunction. (Hevelius, Johannes, "SelenographLe," p. 281. Godanium,16A7.) Here are his exact words, which you doubtless can translates
"Corrisioulatan atom Iran vocamms Slam phasing, qua nonnullis Voterum est Irma socunda, oeo quod die secunda, post Synodus Isuninarium omniusi, mitumissimo

In harmony with this the Millerites oft ropeated the words, "usually the second ovoning after the change". They got this Idea from Prideauxx A who ob-
before their tainod the fact from men has own time. However, William Hales also got it (1st.centiny B.C.) from Gominus, whose Groole text Halos thus translated Whom the moon is in perigee, and her motion quicicost, she does not usun.1Iy appear until the secand day, nor in apogee, when slavest, until tho fourth" (Hales, William, "Now Analyois of Chronology," pe 67. Vol. I. London, 2830.) the carlist tret 9 have found of Seminus is in 1630 , Larslatad into Satin by Sion.
Petavins.

Here is also a Jewish coment on the Gamaliel moon tablet so often referred to by writers of all sehools:
"There was a large court in Jerusalon, called Both Yangzol, whore all the wit-
nesses not, and whore they were exruntnod by the Both Din. Their oxpulmation was
conductod by inquiring of the oldest of the first pair (thoy were examined acoording
to their prolority) as to the form of the moon, whother hor horns wers turnod tovard
the sum, or away from $i t$? to the north, or south of $2 t$? what was hor elovition in
the horizom? towards which side was her declination? the width of her disk, ze"
(Lyons, Jaeques Je, and DO Sola, Abraham, "Jewleh Celonder," p. 3s. Nontree.2, 1854).
Caspari malcos the following statement in regard to Wirin's positions
"Nün, fimily, oxpresses his opinion that we should not go far wrong if, in
ordes to find the firet day of the month, according to the old Jowioh stylo, by the
moon's phase, we add 24 to 48 hours to the true now moon astrononscally caloulated ${ }^{\text {n }}$
(Caspare, Mh. Ede, "Introduotion to the IAfe of Christ." p. 15. Tr. by Evans. Ed-
inburgh, 1876).

We also have other vital evidence as regards the moon's translation that has beem worksod out in the Coumittoo, and which will be publishod soon, we hope. He can show from a day by day hoolsoug of Jewish and oivil time that in evory 19-yoar lunar cyelo wo have now and again vory short ani very long treanslations that agroe with the extremes noted by Centrus, Aratos, Scallgor, Hevellus, ote. -- the proverbial "one to four days." Purthernore, this calendation eametly harmonizes with the paschal postulato loft on record in an old commentary on the Peatatouch in the haxis and
of Aristobulus, apessod on by Anatolius to Fusobsus, whose Groek is wrongly transJated by the Chureh, but correctly put in the German of Caspard, and by astronomore IAlius and lianool. We are trying to find other conflrmatory records.

In a short period of the the Mailerlito lsaders had two translations of the moon to solve: (1) Conjunction on April 17 , with its consequent Msan 1 on April 29. and (2) that of October 13, with Its consequont Tismi I on the day Ootober 23. We know now -- but we did not lenow it earlies in our work - that the Adventist Leaders first worked out the Tisrli 3 oivil date by adaing 6 lumstions, or 177
the "second evening aftor the chayge." days, to the spring phasis on Aprill 18 at sumsot in his gavo them the sumset beginning of Thari 2, the evoning of Ootober $12 / 33$. It was worled out on the Boston moriatan. Comarpuanty, The apriling translation, in How England, was indeod and could not be otharuise. the "second oventing after the change λ " It was ILkowise the "seoond" in Syria. But the Ootobor translation, in Now Bugland, came on the flarst evoning. In the west and south, havever, due to an earilier oocurrenee of the comjunotion dato, the phasis took place on the "socond cvoning," as also it was the "second" in Pralestine. Thus we account for the Millorite reokoningg in aceordance with their simple mule.

Let me also add that the Millerites computed the translation of the moon on the Jerusalom moridian, bringing Tisri 1 there on Ootober 13/14, and Tisri 10 in Jerusalem on Oetober 22/23. These dates had about seven hours in common with the dates in Amerioa. But they came so late in the movement that the computation did not arrouse muoh comment, if one may judge from the printed record. After the Disappointenent, berley harvest at Jerusalem was freely discussed.

From the standpoint of Jewish reckoning, the Millerites were right in saying "usually the seoond evening after the ohange." Calendation shows that the sunset beginning of the Jewish new moon day often eame on the seoond evening after conjunction. But it was not always so. Furthormore, if the phasis oame the second evening, on some certain meridian, say in the east, it would not oeour always on during ite the second evening foe-a-24-houe stretoh around the world. As the earth revolves, the conjunotion date westward bound, oceurs earlier and oarlier until it happens 24 hours sooner than on meridiens farther east. When this oocurs, the moon oan be first seon also 24 hours sooner, and hence her translation on such a longitudo is about that much shorter, depending upon the tine of sunset. The Karaites made the 14 mit about 22 houres.

Such was the case with the October translation on the Boston meridian. It was an unusual translation. The moon was in perigee, and her rapid motion, togother with the earthis, hastened the time of her phasis, although, in plaees far north, she could not be seen. Nevertheless, the Polish Karaite observers (50° north latitude), who had this same northorn problem of the moon to reciron with. alvays counted that the moon at an age of over 22 hours from conjunctions could be seen when simultaneovs with the sum on the horizon at sunset, as happomed in Boston on the evening of Ootober 12. Karaite referenoe by Roldsoff is enelosed.

Therefore, my conolusion is, Brother Washburn, that the short translation period in Oatober, 1844, was caused by that partioular revolution of the earth, In conjunction with the moon in perigees and that though short iranslations were not a constant feature of ancient Jewish time, yot they had to oecur from oyole to oyele, leaving theis mark on oertain moridions. Now England, which had been the ssene of the darkened sum of 1780 , and of the falling stars of 1833 , was a Witness a.lso to an almost forgotton feature of the moon's meridional ohange, which, on Ootober 12, 1844, could only ooers on the longitude of Boston or its neighboring meridians. And so, the Seoond Coming of Christ was heralded by Sun, Stars, and Moon. If you wish any of the sources, I sha. 11 be glad to send thom. When convenient, please give me your oriticism. Tours very sincerely, May 26, 1840 .
General Conferenoe, Talcoma Parle, D.C.

```
st. Helena, Calif.,
```

October 4, 1940.

Dear Brother Froom, -
I received this afternoon your summation of the points involved in the 1844 Millerite time problem. This is Sabbath evening, but I think it right to use Sabbath time to hasten to you a brief reply, especially as I am so pressed with work of exhaustive nature that I can hardly command strength to write on week days.

In your first paragraph, and in paragraph 1 of the Summary, you state that in every nineteen years the moon goes around the earth 235 times, while the earth revolves around the sun "e x a c t ly 19 times, with both series of revolutions ending on precisely the same day."

This is not strictly true, for the reason that the synodical month and the anomalistic and nodical months are not commensurable, being respectively 29.530588, 27.554550 , and 27.212220 , and that on the long average. The incommensurability is seenin the 19-geairpse-year cycle, stated by Mitchell (1937 Smithson.Rept.,147) thus:

19 eclipse years	$6,585.7806$ days
223 synodic months	$6,585.3211$
242 nodical months	$6,585.3572$
239 anomalistic months	$6,585.5374$

Consequently, 19 natural years cannot bring these fractions into unity Glancing at some of my notes taken from Oppolzer's Canon der Finsternisse, I see many eclipses at intervals of 19 years which do not end "on precisely the same day." You will find a host of others. I give a few:
B.G. 593 (numbered by Oppolzer -592, as B.G. 1 is numbered year 0)
-592 April $27 \quad$-591 April $17 \quad$-590 April 6
-571 April $28 \quad$-572 April $16 \quad$-571 April 7
-574 May $9 \quad-573$ April $28 \quad-556$ May 19
-555 May $8 \quad$-554mApril $27 \quad$-537 May 20
-554 April $27 \quad-537$ May 20
-535 March $28 \quad-518$ May 19
I.Jewish Calendar Problems, par. 1: "Usually one moon too early." Better say "sometimes," for it it not only about one time ofit of three?

Pars. 2,3. Well stated. But be sure that you do not adopt, like the Millerites, some features of the "fixed, artificial calendar" and assign them to the Mosaic calendar. We must not only refect the beginning of Nisan before the vernal equinox, but also every fixed feature which does not agree with the moon itself. The Mosaic calendar, like that of the Mohamedans in Cairo today, was based only upon observation of the moon. I will refer you back to this paragraph later. I will add this thought, to which I shall refer again in a later letter: While the Karaites endeavored to restore the original Mosaic calendar, their rules since 1780 are sometimes in error, for they sometimes conflict with the moon itself.

Par. 6. If your statements reflect the position of the Millerites, as I believe they do, then the Millerites did not accept the Karaite calendar in full. This would necessitate beginning each month (with the possible exception of Nisan at times) at the first appearance of the new moon, not beginning the month before the moon could be seen, and not beginning it at a later day either, but at the sunset following or accompanying the phasis of the moon. Amiduanfommminaman This must have been the

Momic custom also.

Sec. II, par. 5. The Millerites were inconsistent in this position, assuming that in all your disexesion you simply quote them, although endorsing their position and argument. I think Scaliger must be misinformed or misunderstood regarding the Jews not usually taking the earliest appearance of the moon. How odd to speak of the Jews not taking the "first phasis," the "first first-appearance," as though there might be a second first-appearance, or even a third first-appearance. Phasis means the first appearance. I think the Karaites preserve the original M saic calendadion when, as Kokisoff states, they "reckon the first day of every month as from the now moon which is first seen with the naked eye in the west." That is the custom of the Mohammedans in Cairo today. In your large MS you have statements to the effect that the month was reckoned from the first appearance of the moon, while in others you have a contradictory statement like this one. That "second or horned crescent" would be taken for beginning the new month only in the case of Nisan when it was necessary to reckon the day of full moon as the 13 th day of the month. Sometimes this would necessitate beginning the month within less than 24 hours after conjugiction, while if the moon were in apogee and in south heliocentric latitude, the second appearance of the moon would have to be awaited before beginning the count of the month in order for the full moon to fall on the 13th day.

Par. 9. The word "identical" cannot be retained here except by conforming to some features of the "fixed artificial calendar" used by the Jews since the fourth century.

Par. 11. Calls for the same comment as Par. 5 and also Par. 26.
Par. 12, note. Assuming that this means a fixed alternation oB 30, 29, 30, 29 , 30, 29 days between Nisan and Tisri, I will say that this conflicts with (1) the Karaite practice; (2) the Talmud, which I may not quote in this letter, but in a future one; and (3)the motion k of the moon itself at times. This fixity and invariable length of the months from Nisan to Tisri is a part of the fixed artificial calendar adopted by the Jews in the fourth century.

Par. 14. There is the same confusion in this paragraph which I have seen two or three times before in the correspondence. Declination and latitude of the moon are not the same, but very different indeed. You have used the word declination here, and given its correct definition. But latitude is position with reference to the ecliptic, not to the equator. The moon can be in north latitude and south declination at the same time, and in south latitude and north declination at the same time. I could cite many instances.

Par. 15. This paragraph is not precisely correct. The moon's future timing cannot be"forecast with exactness by competent computers," although they can very nearly do it. For example, I observed the eclipse of April 28, 1930, which changed to a total eclipse for a short time along a path about a half mile wide which crossed Napa County. It was to be total for only a_bout a second, and I sought to know beforehand what that time would be. The American Ephemeris for 1930, computed in 1927, gave the time as $19 \mathrm{~h}, 26 \mathrm{~m}, 56.5 \mathrm{~s}$ G.C.T. That was the best the computers dould do three years beforehand. In 1930 the time was revised, the last revision from calculations following the observation of the moon in March, 1930. James Robertson now head of the Nautical Almanac office, sent out their final computation. But the moon's small uncertainty of motion made this final computation about a second in error, if I remember rightly. He can tell you how much. (Don't imagine that I detected the error.)

Par. 17. This statement is based wholly upon the revised Jewish calendation. It is not necessarily nor always true of the moon itself.

Par. 19. Adjustments are indeed made as stated here, and have been so made these centuries by the Jews since revising their calendar. Originally, the month was begun when the moon was first seen, and the moon made its own adjustments.

Par. 21. This argument is just as good as the usage of the revised Jewish calendar $\%$ mo bette.

if

Par. 23. This statement is true only mam the revised Jewish calendar, which is its basis, is true. There is evidence in the Talmud, in the Karaite calendar, and in the motion of the moon itself, that this is not always true. It must be checked by observation on the moon itself. $2,2,2$,

Pars. 24, 25. Argument rests upon the revised Jewish calendar, with the assumption that the months from Nisan to Tisri always have $30,29,30,29,30,29$ days, which is not the case.

Par. 26. This argument of no value at all if Elul may have 30 days instead of 29 , which it may. I planf to give the details on this in my next letter. So do not dismiss it because it conflicts with your settled opinion.

Par. 27. Wrong, as I shall show. See pars. 23, 12, my comment.
Par. 28. "Series of 8 unbroken synchronisms" only by resting upon the revised Jewish calendar, in some of its features, instead of taking the moon itself.

Summary, Par. 2. The 177 days. Same criticism as noted above.
Par. 3. Only partly "based upon revival of the Mosaic calendar that God gave his ancient people at the exodus."

The Millerite conclusion was correct, but their argument, as you state it, certainly IS assailable, both from Bible and nature. And if we rest upon the same argument for the day Dct. 22, the world's scholanhip will prove the argument wrong, and with the argument will go the conclusion. This correct conclusion CAN be established by argument truly "unassailable," and that only must we give to the Smithsonian Institution as a formal presentation of the Seventh-day Adventist denomination.

I shall send to you, as soon as my limited time and strength shall permit, the detailed evidence for points herein mentioned, as well as others. I have not allowed a syllable of my criticism to fall under the eye of any of your adversaries. Everything I do is with the purpose of encouraging and aiding you. I am convinced that this message needs the support which each one of us can give, and no one can safely feel independent of his brethren. But we must be careful not to settle down too solidly in our positions like some others about us and among us.

> Yours sincerely,

Dear Miss Amado, -
Brother Prom sent me a copy of "The Jewish Calendar in the Fifth Century, B. C. 2 with the request that I give it immediate attention. I have had only six days to study this matter, and have not done very well in what I have written. I began to write as I read along, and then had to repeat and mix up things somewhat as I went on.

I did not see your name at the close until a day or two after beginning writing. Had I thought of you as the author, or co-author, or co-worker, I am sure I would have studied not to be too blunt in my criticism of the document. Will you not try to bear this in mind as you read it? I presume Brother Prom will send it to you or to Professor Wood.

I may seem a little pointed in some things I say, but it is only because I have sent in things in the past, in my first criticism of the paper on 457 BC , which were rather loftily waved aside, and a condescending note to me seemed to indicate sorrow that I was not able to see the real truth. I had to make a chart on the Pinon of Ptolemy, on which the errors of the paper stood out so that they could not but be seen, before I got a hearing.

I feel very sorry to see strong, dogmatic statements, repeatedly made, which are demonstrably untrue, as is the case in this present document. And I feel that what I write may not receive very much attention if I do not make my position emphatic.

It is my belief that your part of this document is premised upon some fundmental which have first been set forth by others of the Committee. The errors of the premise may cause some criticism to be aimed at what you may have written, based upon the premise. If so, try to tone down the sound of the language, and interpret me as feeling deep appreciation of the hard work you have done.

If I could have been in touch with this work, I think I might have saved someone a lot of labor. As it is, the document will have to be rewritten.

Brother Prom will send you the letter, 21 pages. But as there may be some delay, I will enclose a few sheets or diagrams for your study. I would like to have them returned to me when you have copied them or digested the contents.

You have helped me very much by the few pages which you sent me a year ago. I would be glad to examine other similar things from time to time.

Brother Prom once wrote me that he would send me a 19-year cycle paper, which, from this paper I judge to have been out for some time.

With highest regard, I am
Your brother in this blessed Truth,
 chats.

I have given you a solid week of very hard work.
My writing has been of necessity piecemeal. Read in the order I have numbered the sheets. You will probably want to look at the charts first.

The document you sent me will have to be reqritten. Be sure to send me a copy.

Now contrast what I am sending you regarding this document, and what I wrote you regarding the Syllabus. Here I am saying A LOT. With regard to the Syllabus I said very little. There was little I could say. And what I did say was not like what I am enclosing to you.

Let the contrast emphasize my appreciation of the syllabus. I have found no fault to enlarge upon, as in the present case. And as to the degree of praise I gave it, just re-read what I wrote, and I think it will satisfy y our.

I only wish I had the material to work with that your Committee have in Washington. I could surely do something.

I think I could have saved someone a lot of work if I had been kept in touch with what he or she was doing in working up the present paper.

Remember to have sent to me the 19-year cycle paper.
Ask someone to give me the literal translation of Ptolemy which is reprosented in this paper by $29 / 30,18 / 19$, etc., in the dating.

I have other favors to ask of you sometime.

" THE JEWISH CALENDAR IN THE FIFTH CENTURY B.C."

This document is plainly the result of months of study. I have been asked to give it my "immediate attention" and state my reactions.

Without a library or access to a library, I have had to study this problem without any helps except a few notes that I chanced to take many years ago, and which escaped the firerwhich destroyed my library.

I have had to work very hurriedly, and it is impossible under the circumstances to be entirely lucid or to entirely avoid mistakes.

I have had only six days to study the matter.
But to make myself more clear I have made several diagrams, which I ask you to note carefully. They settle many questions.

I am convinced that in this work we need to take much counsel. Things may appear perfectly clear to us, and yet we be in error. The first three sheets of this letter shows this.

We must not be TOO SURE. And we must not be TOO POSITIVE, too categorical.
We must listen to those who differ from us, even when we are confident that they are wrong.

If we do not do this, we shall be "DISAPPOINTED", Prov. 15:22.

> H. A. Washburn, St. Helena, Calif., Oct. 22, 1940.

To Correct the Egyptian New Year Table.

1. Strike out "from noon to noon, astronomical time."
2. In the footnote, make the Sothic Cycle 1321 BC to 139 AD inclusive.
3. Eliminate the reference to Feb. 27.
4. Change the statement regarding the Julian leap year.

It may not be immediately apparent, but the truth is, that the date for 1 Thoth should be placed opposite the Julian leap year in the last part of the Table, and opposite the year following the Julian leap year in the first part of the Table, if this date of I Thoth is to stand at the head or first of the quadrennium in which 1 Thoth falls on that day.

If you have not read what I have written on this, the above statement will seem so palpably false that you would not give it a moment's consideration. (I fear this has been done with some other suggestions I have sent in.)

Your reason for rejecting the above statement is, what seems to be an irrefutable reason, that you would have thereby a certain point where the date for 1 Thoth would change in three years instead of four, as required.

This reason is as clear to you as your astronomical argument for Oct. 22. You would doubtless assert its absolute irréfragability, and challenge all opposition, just as you do after your argument for Oct. 22.

And yet
your
astronomical
argument
is
each
cese
is
FALSE.
The statement which I have made above, in paragraph 1 , is itself irréfragablib,
while to you it is not worth a secondds consideration.
To you it is palpably false.
And yet I say that it is true, and that you are wrong.
And I can get you to admit it.
An impossible miracle, you say.

I insert these emphatic words only for the purpose of arousing you, not to be TOO SURE, as you are in many sweeping assertions.

It is a fact that the date for 1 Thoth must change every four years, because the Egyptians had no leap years.

The Egyptian year had invariably 365 days.
The Julian year has an extra day in February once every four years, without exception.

If 1 Thoth of the Egyptian calendar fell on March 16 in the year 821 BC , which was a leap year, that Egyptian festival would fall on March 16 in the three following years, 820, BaMM 819, and 818 BC , which are not leap years in the Julian cal endar.

But 817 B.C. is a leap year in the Julian calendar.
The Egyptian year having no leap day, all its festivals would in 817 fall one day earlier in the Julian calendar than they did the year before.

Thoth 1 would fall on March 15 in $817,816,815$, and 814 , just as you have them in your Table.

There would have tobla change every four years down to the end of the list.
If there were a change at some point in THREE years, while at all other points the change was only at intervals of four years, you would not hesitate to condemn such a Table.

And here I am, apparently unable to see the above, which is as plain as the nose on a man's face.

If, as I said, the date of 1 Thoth should be placed opposite a Julian leap year in the latter part of the Table, to indicate a change in its date at that point, to continue
,, there for the three following years,
then I ought to be able to see, if I have any intellect, that this must be true throughout the table.

I ought to be able to see that if I say that in the first part of this Table before me the I Thoth date should be placed opposite the year FOLLOWING the Julian leap year,
then I must pick out a place somewhere in between where I shall have to place a date for 1 Thoth opposite three years only.

You must conclude at once that I am irrational, that that it will be a waste of time to consider my reasons for such a pappable ERROR, while so unspeakably bold and blind as to assert on top of this that my position is ABSOLUTELY IRREFRAGABLE:

You must also conclude that little consideration need be given to my objections to any other position of yours which clearly to you is unassailable.

Now please look at your table on page (1) as you read this.
After we get through, you can make a few simple changes on the table, without having to recopy those thousand items.

Here are three sections of the table:

There is a change in the date for 1 Thoth opposite every leap year, from first to last.

The necessary change every four years seems to have been made without error.
This looks all right, but let us
"MAKEITPLAIN UPON TABLES"

Your apparently faultless Table has omitted an entire Egyptian year:

The change in the date for 1 Thoth, in the last part of the Table, must come opposite a leap year of the Julie calendar.

But not in the first part:
Reckoning back from a fixed, known point, we will come to a Julian year in which 1 Thoth falls on Dec. 31. Likewise on Dec. Il for the three years preceding that year. The earliest of these years will be a leap year, with 366 days. 1 Thoth will occur twice in that year, on Dec. 31, and 365 days earlier, on Jan. 1.

So, there will have to be a place in the table where a Julian year will be written twice. It will be a leap year.

What leap year will this be? 517 BC ? No.
That leap year is 521 BC , which wan be proven in three different, independent ways.
It will fix Feb. 26 as I Thoth in 747 BC , not Feb .27 , as you have it.

In the years of the Table, before 521 BC , the date for 1 Thoth, moximm to stand at the head of a quadrennium, must stand opposite, not a leap year, but the first year after a leap year.

Hence the necessity for a change in the footnote with regard to the Julian leap year.

Now for the three proofs that 521 is the year to appear twice in the Table (and that Feb. 26 is to stand opposite 747 BC):

I.

Censarinus, whose statement you quote, places the 1 Thoth in his day, 238 AD , as occurring on June 25.

You have this correctly stated in Table III. But your Table of dates for 1 Thoth has June 26 for 238. AD.

Censorinus of course knew with exactness what date in the Julian calendar coincided with 1 Thoth in the year he was writing. He is not so accurate in lis statement regarding 1 Thoth a hundred years before, for it contradicts the date in his own time.

June 25 is indeed the date in the Julian ealendar for 1 Thoth in 238 AD , as can be proven in two other independent ways. That was the Julian date in the quadrennium beginning with the Julian leap year 236 AD and including also 237, 238, and 23\%.

Counting back from this, 25 quadrenniums, in which the date is advanced 25 days from June 25 to July 20, we have :

If July 21 were the Julian date of 1 Thoth in 138 or 139, then June 25 was not the date when Censorinus was writing.

He was correct as to the usage right about him. He makes a misstatement regarding the previous century.

His own language proves that his error was with regard to 139 AD.
H_{e} says; "a hundred years ago . . this same day corresponded to the 12 th of the calends of August, the ordinary epoch of the rising of the Canicular star in Egypt."

He is referring to the bright star in Canis Major, Sirius, called "Soth," in the Egyptian language, and to the Sothic Cycle.

And July 21 is not the date of the heliacal rising of Sirius in Egypt, as will appear from :

II.

Breasted, History of the Ancient Egyptians, p 35:
"Already in the 43 rd century BC the men of the Delta had discovered the year of 365 days and they introduced a calendar year of this length, beginning on the day when Sirius rose at sunrise, as determined in the latitude of the southern

Delta, where these earliest astronomers lived, in 4241 BC. . The year began on that day when Sirius first appeared on the eastern horizon at sunrise (the heliacal rising), which in our calendar was on the 19th of July (Julian)."

In 1460 years 1 Thoth would occur again on July 19, the date of the heliacal rising of "Soth," Sirius. Another Sothic Cycle would begin on July 19, 1460 years later, which would be July 19, 1321 BC. 1460 years from that date another Sothic Cycle would begin, on July 19, 140 AD. The previous cycle closed with the year which began on July 20, 139 BC., as shown in the middle of the previous page of this letter.

A quadrennium treginning with July 19, the day of the heliacal rising of Sirius, in the leap year 140 AD , harmonizes with the testimony of Censorinus as to the usage in his day, and it harmonizes with:

III

THE IRREFUTABLE EVIDENGE OF THE ECLIPSES RECORDED BY PTOLEMY.
The eclipse of $721 \mathrm{BC}, \mathrm{Mar} .19$, 19 h 4 m , occurred on the 29 th day of Phamenoth. That makes Feb .20 to be 1 Thoth in 721 BC . See the large detailed diबgram herewith.

The eclipse of 720 BC, March 8, 21 h 30 m , occurred on the 18 th day of Thoth. That makes Feb . 19 to be 1 Thoth in 720 BC . See the large diagram.

In like manner, every one of the eclipses for which Ptolemy gives us the Egyptian date, proves the same thing.

We thus obtain 521 BC as the leap year in which 1 Thoth occurred twice, on Jan. 1 and Dec. 31.

That year must appear twice in a correct table.
Before that leap year, in which the date for 1 Thoth changed from Jan. 1 to Dec. 31, the year in which the date changes is not a leap year, but the year immediately following a leap year.

Feb. 26 will be the date of 1 Thoth for the years $748,747,746,745 \mathrm{BC}$.

- - -
- ---

Now to quickly change the table so that it can be used without recopying:

1. Draw a horizontal line immediately below the leap years previous to and including 521 BC. Let this line extend beyond the year and the date of 1 Thoth following. If you then count the date for 1 Thoth as answering to the quadrennium between the horizontal lines, your chart can stand as it is down to 521 BC , except Feb. 27 at top of column 2 .
2.
3. Write 521 a second time at the top of column 5, and opposite write Dec. 31 as the date of 1 Thoth in the quadrennium 521-518.
4. Draw horizontal lines immediately above the leap years from this point to the end.
5. Make 1 Thoth dates one day less.
6. Correct footnote, each of the three sentences.

I MADE YOUR MISTAKE FOR MANY YEARS, UNTIL I CHANGED TO M MAKE A CHART.

Dear Brother Froom, -
I am giving "immediate attention", as you ask, to the docureent of 26 sheets on "The Jewish Calendar of the Fifth Century B.C."

You have made a large request, as on some previous occasions. This manuscript represents weeks of investigation and careful thought, with extensive library aids. I am obliged to apply myself arduously, with no library, in criticism of this work, and some one among you will know what a task it is.

I am glad to undertake this task, for I trust that what I send you may induce you to reconsider matter that I sent to you upon request over a year ago, but which you did not feel free to accept.

I refer particularly to the faulty arguments you have used to sustain the date Oct. 22, in 1844, while ignoring the irrefutable argument for the same date for the cleansing of the heavenly sanctuary.

What I sent to you was road by Dr. Hoen and others whom you asked me to consult in the consideration of the large document dealing with the various time features of the 2300 day prophecy. They endorsed what I sent you.

Last April, in your lectures at F. U. C. and Senitarium, you used the arguments which we consider untenable, and illustrated on a large, expensive chart or charts.
only A vital item in that argument was the visibility of the new moon at sunset whey 18 hrs 46 min after conjunction, at Boston, on Oct. 12, 1844, marking the beginning of Tisri.

Some who had read what I wrote you noticed the errors, and you wrote me from Lasierra that Dr. Hoen had spoken to you. I know from conversation with him at the time that he was only repeating what I had written more than once to you. Your reaction to his suggestions has tended to keep me silent, inasmuch as what you said of him applied equally to me:

> "Dr. Hoen must be quite an expert to be better informed than the Naval Observatory experts. I really wish the brother would be a little more modest. I told him that a certain chart that he criticised had been both suggested and approved by the Naval Observatory experts. He seid it was wrong. I confide to you that I still have a little confidence left in the Naval experts."
> On the point in question, all I will say now is that I repeat everything I wrote, with the exception of some error in my first letter, which I corrected. I have the data, which I will send to you when I can comnend strength to write it out, and it is data that 1 Mr . Draper and others at the Naval Observatory will secept.

The moon could not possibly be seen under the conditions of Oct. 12, 1844 at ioston, and your chart is wrong.

And your supporting evidence can be shown to be faulty. But more upon this at another time.

After waiting this length of time, I trust that I shall not be charged with immodesty, and a haste to defend my own opinions. And I hope that this letter
will contain something to revive confidence that I know what I am talking about, which will lead you to give careful consideration to the matter which I shall send you, on a matter which has already been fully settled in your minds, so that it is difficult for you to give adequate consideration to what you "know" erroneous, like my ministerial associates of other churches with reference to the Sabbath and the state of the dead. But in both instances I have perfect composure of mind, just waiting, for I also "know" something that they do not.
(In using the word "you", I do not mean "thou," but have reference to the Committee, or to those members who handle this part of the subject.)

Now for this present document:
Please turn to page 1 and notice the dates given for the lst of Thoth in the various years from 521 to 517 B. C. Here they are:

521	Jan $\nsim 1$	These figures look perfectly
520	$" 1$	all right.
519	$" 1$	There is a change in the date of the
518	$"$	Egyptian new year every four years,
517	Dec 31	just as in the rest of the long Table.
516	$"$	"
515	$"$	BUT, there is a mistake
514	here.	
513	Dec 30	

Bear in mind that the Egyptian year was always 365 days long, without exception. Exactly 365 days after the first of the month Thoth there was another lst of Thoth.

The composer of the above table makes 730 days intervene between two new year's days. Do you see it?

How long is it between Jan 1, 528 (518)

Pardon my poor, nervous, obscuring typing.

If all the rest of the table were right, which is not the case, then this portion should read thus:

520	Jan	
519		
518		"
517		"
"	Dec	31
516		"
515		"
514		"
513	Dec	30

with change of date every four years preceding and following.

I do not have access to a library, and my own books were burned up years ago, but as I remember it, I think your statement on page 4 is correct, where it gives June 25 for the lst of Thoth in 238 A.D., citing Censorinus.

But your table is totally out of harmony with this. June 26 is given as 1 Thoth in 238, and this affects every other date in the entire table, for they all count back from this, the date changing every four years (except in 521-517 BG, when it makes the ohange of date in five years).

I happen to have my textbook from which I taught Egytpian history for many years, and I want to quote a sentence. This is Breasted's "History of the Ancient Egyptians," page 35 ; after his argument for the beginning of Sothic Cycles in 4241 BC, and every 1460 years thereafter, in $2781 \mathrm{BC}, 1321 \mathrm{BC}$, and 14 D AD:
"The year began on that day when Sirius first appeared on the eastern horizon at sunrise (the heliacal rising), which in our calendar was on the nineteenth of July."

Perhaps I should have quoted a preceding statement:
"Already in the forty-third century BC the men of the del ta had discovered the year of three hundred sisty-five dqys and they introduced a calendar year of this length, beginning on the day when Sirius rose at sunrise, as determined in the latitude of the southern Delta, where these earliest astronomers lived, in 4241 BC."

Breasted was the highest authority on Egypt that America has produced, master of all the hieroglyphic iiterature. He is not alone in assigning July 19 as the date of 1 Thoth in 14Q AD. Your table has July 20. That it is in error, I shall show by the very eclipses which you handle in such a way as to make your Thoth datếsiocorrect.

You hold to Feb. 27 as the Egyptian now year in 747 BC, Era of Nabonassar. I shall show that Feb. 26 must be accepted, but will first quote a statement that was published for years in the American Ephemeris before its form was changed. In my 1916 copy is the statement that the year 1916 corresponded to "the year 2663 since the beginning of the era of Nabonassar, which has been assigned to Wednesday, the 26 th of February, of the 3967 th year of the Julian period: corresponding in the notation of chronologists to the 747 th , and, in the notation of astronomers, to the 746 th year before the birth of Christ."

Your Table should be corrected as follows for the years indicated, and all other dates \#ill follow therefrom by changing every gour years:

For the dates Jan 1 and Dec 31:
BC 524 Jan 1 523 522 " 521 520 519 518 517 Dec. 30 etc

From this will follow: BC $74^{\circ} \mathrm{Feb} 26$
Era of Nabonmssar

Before considering the above further, in connection with the eclipses, I will copy some notes which I jotted down as I read along in the MS.

Fage 4, Tables I and II. corrected to read 1 day earlier.

The dates in columns 4 and 7 will have to be cory in for for forming Nisan, instead of being based upon the visibility of the moon, according to the Mosaic usage, are based upon the usage of the revised Jewish calendar, which is not based upon observation, and is sometimes in error, not in harmony with the phasis of the moon. The moon itself does not appear always at the invariable intervals of $30,29,30,29,30,29$ days from Nisan to Tisri, which you have adopted from the approximate Jewish calendar of later times. We can have accuracy in determining the dates of phasis only as we compute the altitude of the moon at sunset on the date under consideration, and then apply a rume as to the minimum altitude of the moon above the horizon for naked-eye visibility at sunset. From all that I have seen from you, you have neglected this matter entirely. You would have done well to take a oue from the Karaite rule, as given by Kokisoff.

The Karaites have preserved several features of the original Mosaic calendar, even since their revision of 1780. One is the barley-harvest moon for Nisan, which you have accepted. Another is the beginning of a month as soon as the now moon is
 been with the naked eye, not before, not later. This feature of the Mosaic calendar you sometimes accept in your discussions, and at other times you assert a contra- weache. diction, that the Jows usually did not begin their months with the phasis of the moon (or "first phasis", I believe I once read, as though there might be a second first appearance, or even a third first appearance.

You did adopt one Karaite rule from the 1780 revised calendar which is at times demonstrably untrue: That the new moon can be seen at sunset if 18 hours have elapsed since conjunction. You hang everything on this in your contention for Tisri 1 at Boston beginning at sunset on Oct. 12, 1844. I will send you later specific occasions when the application of this rule would make the moon visible when it was actually several degrees below the horizon. I will send this matter with other on the 30,29 day sequence.

Page 4, column 4 of Table III. All the dates in this column, with the exception of the last, should be made one day earlier. That last date is all right, because you took it from the wrong place in your Table, as will appear when I discuss that eclipse.

And now I come to discuss each of the eclipses from which you try to force an argument for the accuracy of yout 1 Thoth table, and will show that they all disprove your contention. They prove the opposite of what you tried to make them prove.

But I must first notice your contention that the Egyptian days began and ended at noon, like the usage of modern astronomers. Although you state in beginning that the Egyptian day "probably" begen and onded at noon, and later admit that chronologers are not unanimous on the matter, you nevertheless soon become categorical in repeated assertion regarding the matter, and for the reason that the kind of argument you have built up seems to sustain your position.

Much can be said on this matter, but I shall not take time to discuss it very
long. The invariability of uniformity in the names of the days of the week is evidence that no people (with the exception, for scientific records, of a few astronomers) ever separated the natural day into two parts, giving different degignations to forenoon and afternoon. In fact this would not be possible, for they could not tell what day it was near noon, when some events happened. There could not be uniformity in the United States to-day, even though everyone had a watch.

In this matter, we are discussing the records of Claudius Ptolemy, and we must reckon the day as he does, which is from midnight to midnight. Nearly every one of your quotations indicate this. In his record of a lunar eclipse at night, he does not name one day, as he would if the day reached from noon to noon, but he names the two days which are divided by midnight. In speaking of the second eclipse in another place (Almagest, ch vii, quoted in Guinness, Light for Last Days, 399, which I happened to copy years ago), he says that it was "between the 18th and 19th at one-half and one-third of an equinoctial hour before midnight." This settles the question which you have been so categorical about, but in the other direction.

Now for your discussion of the eclipses. I will not try to unravel the confused reasoning on pages 14 and 15. The diagrams, and a few words here, will show that reasoning to be fallacious.

Eclipse 1, on Thoth 29, which you make out to be 27 days after Thoth 1, by digrammental jugglery which I have not been able to follow. By counting these 27 days after 1 Thoth you arrive at the actual date of the eclipse, but only because you Ratelan erroneous date for Thoth 1 inmogmmmfinition for 721 BC . The true date for 1 Thoth in 721 is Feb. 20, not 21.

Eclipse 2. Thoth 18 is not 16 days after Thoth 1, but 17. Your date for 1 Thoth is Feb. 20, whereas it should be Feb. 19. But the two errors neutralize, so you get the date of the eclipse in your last column.

Instead of trying to repeat your confused reasoning on pages 14 and 15, which I cannot understand, just look at the enclosed diagrams which I have made fofthese two eclipses, which make all the facts as clear as day. I recommend that you make similar diagrams for all the other eclipses, being careful not to make a mistake in the interval from 1 Thoth to the day of the eclipse, niot to the day before the eclipse, as you have done.

Eclipse 3. 15 Phemenoth is the 15 th day of the seventh month, 6×30 days having preceded 1 Phamenoth, it is the 195th day of the Egyptian year, and 194 days after the first day of the year. Your table says it is the 193rd, and you so reckon it, but get the true date of the eclipse because you count from 1 Thoth as Feb. 20, when it was really Feb. 19.

While I think of it, just note from the diagram for eclipse 1 and 2 , that you cannot move the dates Feb. 19 and Feb. 20, for 720 and 721, a single line either way. To allow the eclipses to come on the days Ptolemy says they did, you cannot allow Feb. 19 to correspond with 72l, nor Feb. 20 to correspond with 720. This fixes the date to be placed after every year in the Table, regardless of what others may say. The recorded time of these two eclipses is sufficient to formulate the Table so that not a line can be changed.

Eclipse 4. Occurring after midnight, the eclipse was on 28 Athyr, the 88 th day of the year, and 87 days after 1 Thoth, which was Jan. 26 , in 621 BC. on m You call the interval 86 days, bat count Jan. 27 as 1 Thoth, so that as a reuit Hop of the two netralizing errors you have the correct date of the eclipse, Apr. 22 . 3rectain

Eclipse 7, on 3 Tybi, the 5th month, occurred on the l23rd day of the year, 122 days after Thoth, which was rightly Dec. 24. You count Dec. 25 as 1 Thoth, and then add only 121 days, getting the correct date through two errors.

Eclipse 8. sheet 5, I skipped eclipses 5 and 6 .

Eclipse 5. On 17 Phamenoth, the 7 th month, occurred on the 197 th day of the year, 196 days after thoth I, which was really Jan. 1. You habe the wrong date for 3 Thoth, Jan. 2, and then you add only 195 days to get the true day of the eclipse.

Two errors, neutralizing.
Eclipse 6. Epiphi 28, in the 11th month, is the 328th day of the year, and the 327 th day after Thoth 1, which was Dec. 27. You have the correct date of the eclipse only because you count Dec. 28 as 1 Thoth, and then add only 326 days.

Eclipse 8. On the 24th day of the 7th month, Phamenoth, the 204th day of the year, and 203 days after ? Thoth, which was Nov. 27 in 383 BC. You hold to Nov. 28 as 1 Thoth, and then add only 202 days instead of the 203. Two compensating errors again.

Eclipse 9. Your comment on this on page 15 is queer, confused reasoning. I wish we had the language represented by the dots in your quotation of Ptolemy on page 10. He is speaking about an eclipse which someone had said was on 5 Mesore. He does not say that it occurred on 5 Mesore, but " $14 \frac{1}{4}$ equinoctial hours after the noon of the 5 th ." Ptolemy is very clear as counting the days not from noon, but from midnight. His statement about the eclipse of Mar. 8, 720, near midnight, "between the 18th and 19th," could not be clearer. By the way, whiat is the Greek, or the literal rendering of the original Greek for the expressions 29/20 Thoth, 18/19 Thoth, 15/16 Phamenoth, 27/28 Athyr, 17/18 Phamenoth, 28/29 Epiphi, 3/4 Tybi, 24/25 Phamenoth, and 19/20 Pharmuthi which you give on pages 9,10?

It is plain that Ptolemy is speaking of an eclipse which occurred, as to its central time, after midnight, on the 6 th of Mesore. Mesare 6, in the 12 th month, is the 336 th day of the year, the 335 th day after 1 Thoth, which, at the beginning of this Egyptian year, in 201 BC, was Oct. 12, as it was also in 200 BC . 335 days after Oct. 12, brings us to the day of the eclipse, which was Sept. 12, 200 BC. You take Oct. 13 as 1 Thoth, and then add only 334 days instaad of 335, so of course again arriving at the right date despite two erross which compensate.
Byyour thes is the eclipse would haveto ocour

Eclipse 10, on 11 Pharmuthi, the 221st day of the year, 220 days after 1 Thoth, which was Sep. 24. You have Sept. 25 in your Table for I Thoth, and then Ph Phemuthi add 219 days instead of 220 . It seems queer to me that you have made this series of errors as to the interval after 1 Thoth. Did you feel so sure of the accuracy of your 1 Thoth Table that you changed the interval so as to fit Oppolzer's date of the eclipse? I think you must have been confused in your problem.

mampro 20 ramita 230th
 सरास 229

Eclipse 11.
On Pharmuthi rait, the mand day of the year,
RRa days after 1 Thoth 1. The eclipse was March 6, 136 AD , and the preceding 1 Thoth was in 135 AD , and fell on July 21, just 229 days affimen before March 6, 136 AD, a leap year. The day of the eclipse was not Parmuthi 19, but 20, because it was after mednight.

Now in this single case you have the correct interval after 1 Thoth, namely 229. I wonder why? It looks as though you had taken this interval because it was what was necessary to reach from July 21, which you selected for 1 Thoth, to March 6, the day of the eclipse. Butmimbonamithemanswrenmbammynupuastawnam
 of taking the following instead of the preceding I Thoth date from your table,
which would have given you July 22 to reckon from, you would agan in this instance also added only 228 days, one less than the actual interval, (to make it come out even?).

I cannot help feeling a tinge of sadness
as I look again at the title of Table III: "Ptolemaic Lunar Eclipse Check on Egyptian New Year Table."

It is andeed a chect, and infallible one. But I feel sad at what this check has done to your table.

You have done a lot of hard work, I can see
that plainly. It must be disappointing to have to go
over all the work, and rewrite the whole paper.
But these disappointments have their
compensation somewhere.
Please do not take my blunt criticisms as indicative of pleasure in pointing out your errors. Few people know how difficult are the problems on which you are working, and how difficult not to make mistakes. I feel entirely sympathetic with you, and I feel very grateful for the privilege of going carefully over this work.

The quotations from Ptolemy I value highly. I have wanted them for many years, but have never had access to libraries except perhaps half a day at intervals of years. I found an old copy in Greek at Lick Observatory, but I could be there but two or three hours, so did not try to find a needle in that haystack.

I think I should send on to you what I have written, and not try to discuss the rest of this document. I have been working very hard on it, having to grasp and weigh in a half a week what has been brought together after weeks of labor. I cannot take more time just now. When the document is rewritten, send me a copy. I will be delighted to read it, for I know there will be some good things in it.

In reqriting this, I think consideration should be given to some things I wrote in a letter when I first looked at this manuscript, but delayed sending, and then started to rewrite, in the pages you have been going over. I am too weary to rewrite more, so will append to this the second half of page 2 and all of page 3, on which I had signed my name. I did not mail the letter, as I did not know what your address would be in St. Paul. I now hear that it is Hotel Lowry, so will mail this matter to you there.

I have another letter written, which did not habe all in it that I wanted, so I did not send it. In my weariness, I think I had not try to finish it, but enclose it with this. Read it after you read this.

There is still another letter to be written, dealing with oct. 22, and your fallacies in the astronomical argument on which you base the whole matter. I will write that when I can. We are having to hire men and pay them for work which I should be doing. And expense even for postage is something that we feel, with our small income.

I wish I might see the "Wood 19-year Cycles" which are referred to near the
top of page 18. Can you let me isee a copy?

Eclipse \#3, "on the $15 / 16$ of Phamenoth . . $41 / 3$ hours before midnight" at Elexandria. Oppolzer's Greenwich time, 720 BC, Sept. 1, 17 h 4 m .

15 Phamenoth is the 195th day of the year, the 194th after Thoth 1.
Quir authors have 1 Thoth 6n Feb. 20, from noon.
194 days from noon marking the end of 1 Thoth on Feb. 21 reach to noon on Sept. 3, 15 Phamenoth from noon Sept. 2 to noon Sept. 3.

Thoth
Feb.

194 days

194 days
 Phamenoth 15

Impossible for the eclipse to occur on 15 Phamenoth by our authors' thesis. - - -

Eclipse \#4, "on the 27/28 Egyptian Athyr . . 5 hours after midnight,"in Alex. Oppolzer's Greenwich time, 621 BG, Apr. 22, 2 h 38 m .

28 Athyr is the 88 th day of the year, 87 days after 1 Thoth. Our authors have I Thoth on Jan. 27, from noon. 87 days from the next noon reach to noon, April 24.

87 days
Impossible for the eclipse to occur on either Athyr 27 or 28 If it occurred on Athyr 27, then, by their thesis, it occurred on April 23, for 5 hours after midnight would be nearly $\frac{3}{4}$ through Athyr 27.
The conditions are fullilled only by having 1 Thoth on Jan. 26, in 621 BC and on Feb. 26, in 747 BC.

Eclipse \#5. "Egyptian 17/18 Phamenoth" . . 1 5/6 hours before midnight" in Alex. Oppolzer's Greenvich time, 523 BC, July 16, 21 h 0 m

17 Phamenoth is the 197th day of the year, the 196th after 1 Thoth. Our authors heve 1 Thoth beginning at noon, Jan. 2. The 197th day would begin at noon on the 199th day of our year, July 17, and reach to noon July 18.

Impossible for the eclipse to occur on Phamenoth 17 by the thesis. 1 Thoth must occur on Jan. 1.

Eclipse \# 6, "In the 28/29 of the Egyptian Epiphi . . $1 \frac{1}{4}$ equinoctial hours before midnight" in Alexandria.
Oppolzer's Greenwich time, 502 BC , Nov. 19, 21 h 24 m .
28 Epiphi is the 328th day of the year
Our authors have 1 Thoth begin at noon on Dec. 28.
The 328th day would begin at noon on Nov. 20, end noon Nov. 21

Thoth		17	
Dec.	27	$28 \mid$	29
Thoth	1		

- 327 days

327 days
Epiphi Nov. Epiphi

Impossible for the eclipse to occur on 28 Epiphi by the thesis. 1 Thoth must be on Dec. 27 in 503 (and 502 also), and thereby on Feb .26 in 747 BC .

Eclipse \#7, "On the $3 / 4$ of the Egyptian Tybi ."
Oppolzer's time, 491 BC, April 25, 19h 55m
3 Tybi, the 123 rd day of the year.
Our authors have 1 Thoth begin at noon Dec. 25.
The 123rd day would reach from noon April 26 to noon April 27.

Thoth Dec. Thoth

122 days
Impossible for the eclipse to occur on 3 Thyi by the thesis.
1 Thoth was Dec. 24 in 492 (and also in 491), thereby
Feb. 26 in 747 BC.

- .-. .

Eclipse \#8. "In Alexandria . . $8 \frac{1}{4}$ equinoctial hours after/noon of the 24 th" Phamenoth. Oppolzer's Greenwich time, 382 B.C., June 18, 18h 31m

24 Phamenoth is the 204th day of the year.
Our authors have 1 Thoth begin at noon Nov. 28.
The 204th days would be from noon June 19 to noon June 20.

Impossible for eclipse to occur on Phamenoth 24 by the thesis.
1 Thoth must be Nov. 27 in 383 BC , and thereby
Feb. 26 in 747 BC

Eclipse \#9. "141 equinoctial hours after the noon of the 5th" of Mesore. Oppolzer's Greenwich time, BC 200, Sept. 12, Oh 28 m

Occurring over 2 hours after midnight, the eclipse was on Mesore 6. But we take our authors' thesis that the day began and ended at noon, and that "the noon" mentioned by Ptolemy was the first noon, and that 1 Thoth began at noon on Oct. 13
Mesore 5 is the 335th day of the year, the 334 th after 1 Thoth. The 335th day would end 334 days after the end of 1 Thoth, at noon of Sept. 13.
$14 \frac{1}{4}$ hours after the first noon would fall on Sept. 13. Is that
when the eclipse occurred?

Thoth Oct. Thoth

	1	
12	13	14
1		

334 days

Mesore
Sept.

Even with all our authors' assumptions, the eclipse could not occur on Mesore 5.
The only calendar which fits has 1 Thoth on Oct. 12 in 201, and on Feb. 26 in 747 BC.

Eclipse \#10. "On the lith of the Egyptian Pharmuthi . . about 5 civil hours before the noon of the lith."
Oppolzer's Greenwich time, BC 128, May 2, Ah 35m Ginzel's Alexandrian time, " 6h 43m

11 Pharmuthi is the 221st day of the Egyptian year, the 220th after 1 Thoth Our authors have 1 Thoth begin at noon, Sept. 25. 11 Pharmuthi would end at noon on May 4.

Our authors' thesis would make the eclipse occur on Pharmuth 9. Therefore it is emphatically untenable.

Pharmuthi 11 being the day of the eclipse, May 2, the last of Thoth fell on Sept. 24 in 129 BC. This would bring 1 Thoth on Feb. 26 in 747 BC

Eclipse \#10. "on the lith of the Egyptian Pharmuthi," "about five civil hours before the noon of the lith."
Oppolzer computes the eclipse at 4 h 35 m May 2, 128 B.C., Greenwich Civ. Time Ginzel, May 2.28 , or 6 h 4 m , Alexandrian Civil Time.

Our authors have 1 Thoth in this case on Sept. 25, from noon.
Question: Would it be possible for the eclipse to occur on 11 Pharmuthi, a few hours before the noon marking its close?

Pharmuthi is the 8th month, 210 days preceding 1 Pharmuthi. 11 Pharmuthi is the 22lst day of the Egyptian year, the 220th after 1 Thoth

Thoth I must fall on Sep. 24
in 129 B.C. (and therefore on Feb .26 in 747DC.)

Our authors' position would make the eclipse fall on
Pharmuthi 9.

Their thesis therefore is untenable.

Eclipse \#11, "On the 19/20 ofm the Egyptian Pharmuthi . . at 4 equinoctial hours (after midnight.")
Oppoleer's Greenwich time, AD 136, March 6, Ih 43m
Occuring after midnight, the date had cyanged to 20 Pharmuthi; but we make diagram according to our authors' thesis, that the day reached from noon to noon, with the eclipse on 19 Pharmuthi.
They have 1 Thoth begin with noon, July 21.
19 Pharmuthi is the 229th day of the year, and begins 228 days after 1 Thoth, in this case at noon on Mar 5, there being 29 days in February of this year, and ending noon Mar. 6. Diagram seems to prove them right:

But note:
They did not take from their New Year Table the date of the preceding I Thoth, but the date of the following one, in 136 AD .
The preceding Thoth was in 135 AD , and their table gives us the date July 22 for 1 Thoth.
A new diagram is then necessary, to test the thesis:

228 days
The thesis makes the ec lipse on Pharmuthi 18, no later.

It happens that the true date for 1 Thoth in 135 AD is July 21, the date the authors ased, contrary to their table.
And the eclipse occurring 4 hours after midnight, was on 20 Pharmuthi.
Placing 1 Thoth on July 21, as required by all the other eclipses, we have the eclipse of March 6 occurring also on 20 Pharmuthi.

In Table III, we have two more items, \#12 and \#13, placing 1 Thoth on July 21 in 139 AD , and on June 25 in 238 AD , on the authority of Censorinus, who is quoted on page 16, as saying that I Thoth in the year he was writing "corresponds to the 7th calends of July," "whilst a hundred years ago . . this same day corresponded to the 12 th of the calends of August, the ordinary epoch of the rising of the Canicular star in Egypt."

Now in the $50 \frac{1}{2}$ years which have elapsed since my last Latin lesson, without any use whatever of the language, I am unable to remember clearly the meaning of the calendric terms above, except that calends meant the first day of the month. And I have no library from which to get information.

But let us look at what Censorinus says. He ought to be correct as to 1 Thoth in his day, while he might be in error as to the day a hundred years before.

If "7th calends of July" corresponds to June 25, as you have it in Table III, and which I think I remember reading years ago, the meaning of"7th calends" would
mean the 6th day before the first day of the month, the calends itself being counted to make the 7 days. "12th of the calends of August"would then mean July 21, as you have it in Table III opposite 139.

But white you have this consistency in this table, your New Year table, which is your rule, is not consistent. That table has, indeed, July 21 for 139 AD, but it has June 26, not June 25, for 238 AD.

And you cannot make your table consistent. For if you shift the dates so that June 25 is brought up to 238 AD, you will thereby move July 20 up to 139.

The reason for this is that Censorinus contradicts himself. Either he was right in stating that 1 Thoth occurred on July 21 in 139 AD , and wrong is stating the usage in his own day, which is unthinkable, or he was wrongly informed as to the custom in 139 AD .

We have a check from his own words. He speaks of the "epoch of the rising of the Canicular star in Egypt." The Canicular star is Sirius (Egyptian "Soth"), the bright star in Canis Major. And the date when Sirius, "Soth", rises heliacally in the Delta, which is July 19 (Breasted, Hist.Anc. Egyptians, p 35), coincides with the moveable I Thoth, that marks the beginning \neq of a new Sothic Cycle.

Now all the dates I have given as the correct dates for 1 Thoth, which by the eclipses recorded by Ptolemy, cannot be-pllacedothorwise by even a single year, harmonisee with all that Breasted says, and with the statement of Censorinus with regard to the custom in his own day, which we must accept.

Your Item \#13 in Table III is correct, while the date for 139 AD should be July 20. Item 13 wrecks your New Year Table.

Now you may ask, if we place June 25 opposite 238 AD , what three other years should stand opposite June 25 ?

Answer Ho. l: A Sothic Cycle began on July 19, 140 AD, and 1 Thoth fell on July 19 in that year and the three following years. Then in 144 AD the date mamam became July 18 for 4 years. By this, June 25 will be the date of 1 Thoth in the years 236-239 AD, inclusive.

Answer No. 2: Ptolemy's eclipses of 721 and 720 BC fixp the table in exactly the same way, so that no year can be moved backward or forward. The eclipse of 721 makes I Thoth on Feb. 20. But this eclipse alone would not tell us what other years beside 721 had 1 Thoth on Feb. 20.

The second eclipse, and also the third, make Feb. 19 the lst of Thoth in 720. But these two eclipses alone would not tell us what three other years had Feb. 19 as 1 Thoth.

The eclipses of the two years fix 721 as the last year which had 1 Thoth on Feb. 20, and 720 BC as the first year which had 1 Thoth on Feb. 19.

The reult fits perfectly with the beginning of a Sothic Cycle on the day of the heliacal rising of Sirius, and with the testimony of Censorinus with regard to the usage in his day. But if Censorinus were to state something altogether different, no matter what he should say, the eclipses themselves, as to-day computed, together with the calendar day on which Ptolemy records that the eclipses occurred, settle the question with complete finality.

This is a fine astronomical confirmation, an argument irréfragable. We should advance a similar argument for Oct. 22.

Fage 18 of your document gives evidence that the Hebrews originally based their calendar solely upon the OBSERVED MOON, and did not begin their months at fixed intervals of $30,39,30,29,30,29$ days, even from Nisan to Tisri. This latter is an innovation, an approximation to the actual moon, adopted in the Jewish revised calendar. (And from them adopted by our present authors.)

Likewise, the leap years would not be inserted according to the fixed rule of the revised Jewish calendar, and adopted also by our present authors.

Don't forget your statement on this page, that the facts before you "indicate that observation was governing the passover date, rather than a fixed mnemonic." "Evidence of observation only in the papyrus period."

They were looking at the moon itself, not at any tables.
Months sometimes were 30,30 days, or 29,29 days. There was not a fixed interval of 177 days from Nisan to Tisri, from which there was no variation. Elul sometimes had 30 days, contrary to your supporting argument for 0ct. 22.

And this because the moon is not regular and uniform, but varies to either side of a mean position. It is the MEAN position with which the Jews have to do in making their calendar, and you follow them in it. You will sometimes be a day in error.

THE ONLY WAY to get accurate results is to ascertain by computation the angular distance of the moon from the sun at sunset on the day in question; (2) compute the height of the moon above the horizon, the altitude, from
(a) the angular distance from the sun; (b) the inclination of the ecliptic
at that particular point; (c) the heliocentric latitude (NOT "declination")
of the moon; and (3) apply a recognized guiding rule as to what must be the minimum altitude of the moon in order to be visible with the naked eye at sunset.

INSTEAD OF THIS, from all I can see, you apply mechanical rules drawn from the usage of the revised Jewish calendar, based on calculation of the MEAN position of the moon, and obtaining only APPROXIMATE results.

In this way, months are sometimes reckoned as beginning at the time of phasis (first visibility with the naked eye), sometimes they begin a day or so after the moon is visible, with a "horned" moon. And sometimes when the moon is absolutely invisible.
But only when the month is counted as beginning at the sunset accompanying of following phasis, the first visible appearance, can one be sure that he is obtaining the Mosaic calendar date.

This is one of the Karaite rules, brought down from Moses, which you overlook. It is not one of their revised usages.

For this reason, your calendars for the first century $A D$ or the 5 th century BC may sometimes be one day in error, with the sole exception of 1 Nisan. (And even in the case of Nisan some statements in Fart V, misquotations, must be cleared up.)

* Chancing to glance at page 19, I see the month Mesore of the Egyptian calen4 dar given 35 days. That should be 30 days, like the other 11 months. There were five intercalary feast days intervening between Mesore and Thoth.

This MS demands some close study. There are some fine things in it. I am satisfied also that an erroneous theory is in it, as in other papers pertaining to Oct. 22, 1844. The theory is not needed with reference to Oct. 22, for the truth which it erroneously attempts to establish can be irrefutably extablished another way. You have rejected one feature of the revised Jewish calendar, with reference to the beginning of Nisan in some years, but you have retained other features, and assign them to the original Mosaic calendar.

You take from the present Jewish calendar of calculation, the fixed lengths of $30,29,30,29,30,29$ days for the months from Nisan to Tisri, which loes not always harmonise with the visibie moon. * You overlook the Karaite statement regarding this matter, and have not noticed the Talmud. The original calendar had the months (with the exception of Nisan at times, if Aristobulus be properly interpreted) begin immediately after the phasis of the moon. And phassas, some of your papers should have remembered, means the first appearance of the moon. There is no such thing as a second phasis (a second first appearance). XAnd for this reason Elul did not always have 29 days. It would not have had 29 days in 1844 if Boston had been the meridian for the dates of the 2300 year prophecy, for the moon would have made it 30 and Tisri 29. It is the moon itself which rules the ancient Hebrew calendar, just as it does the modern Mohammedan calendar. I think that some of your other documents are inconsistent for this reason, and also because of your position regarding the "Horned moon" beginning of the month, combined with months beginning when the moon would be absolutely invisible with even a field glass.

I rather expect to run into some faults in this paper which I fear hase characterized some of your other investigations. I have seen references to a Hebrew calendar for the first century, and I think possibly I may find sometiing like it here for the fifth century. I have feared that instead of taking the moon itself for the beginning of months, you were working on a theory.

I have seen no rule laid down by you with reference to the visibility of the moon, except upon theory. I mean, that I have seen no rule as to the altitude of the moon above the horizon, in order to be visible to the naked eye. You have the Karaite rule in Kokisoff, but you have not acted upon it.

I think the task is beyond your ability. You would have to computethe altitude of the moon above the horizon for the day and hour in question, which is no mean task. Then you would have to apply a fixed rule as to the minimum altitude for the moon to be visible with the naked eye.

One reason why I think the task beyond the one who is doing this work is the fact that repeatedly I note that latitude is confasad with declination. No one can makeremputations who does not understand the difference between the two.

But this is enough for now. I wrote a week ago, but did not finish, in preparation for a more important letter to follow that.

I am sorry to have to drop bomb-shells in your direction, but I have to do it. Your findings, so I have been informed, at least with reference to the documents of ovar a year ago, ade to be deposited, or have been deposited, with the Smithsonian Institution, and thus placed where the official Seventh-Day Adventist position can be taken by our opponents, and its errors exposed to prove (?) that Seventh-day Adventists base their conclusions on error.

I have a fear that what I have sent, and what I have to send, will not receive the attention it merits. And this because my suggestions do not harmonize with positions which have already been settled with finality. I feel that some things have been so settled in your minds that you will judge anything to the contrary before you give it thorough investigation. I heard a very devout brother and thorough scholar, whom you would not think of considering among your critics, say that he thought it useless to send in suggestions to your committee.

I certainly would not be writing this letter, or any of my letters, if it were merely to maintain my own opinion. I write only because I know the world's scholership will scrutinizee every position of truth which we hold, and sevely criticise it. This statement you well remember, in Vol. 5. You are doing work which will of necessity be accepted by our brethren who cannot investigate as you can, and who will accept and teach your conclusions. If I see an error in you, I am under obligation to point it out, inasmuch as you have asked me to do that very thing.

I have looked at ony the first 4 pages of this present document. I wonder if it will launch me into other discussions before I have time and strength to finish those already om hand. My strength is exceedingly limited, and I have heavy burdens aside from this labor. I am saptimes practically prostrated. And, I wish I had access to a library. I think I could do something.

It's late, so good night, with ever so much love, and with deep appreciation to you for all the matter which you have permitted me to read. It is a great benefit.

St. Helena, Calif., Nov. 22, 1940.

I am sorry that I did not receive your letter regarding the tentative character of the documnet on the Jewish Calendar in the 5 th Century until after I had written my criticism.

As I began to write as I read page by page, I did not for some time notice Miss Amadon's name at the end. I had supposed from previous references to the matter that several persons had been working on the material for several months.

I wrote Miss Amadon: "Had I thought of you as the author, or co-author, of co-worker, I am sure I would have studied not to be too blunt in my criticism of the document. Will you not try to bear this in mind as you read it?... I may seem a little pointed in some things I say, but it is only because I have sent in things in the past, in my first criticism of the paper on 457 BC , which were rather loftily waved aside, and a condescending note to me seemed to indicate sorrow that I was not able to see the real truth. I had to make a chart on the Canon of Ptolemy, on which the errors of the paper stood out so that they could not but be seen, before I got a hearing." ... It is my belief that your part of this document is premised upon some fundamentals which have first been set forth by others. The errors of the premise may cause some criticism to be aimed at what you may have written, based upon the premise. If so, try to tone down the sound of the language, and interpret me as feeling deep appreciation of the hard work you have done."

When I pointed out the large invisible mistake in the I Thoth Table, I tried to emphasize the necessity of giving careful attention er en suggestions which might on the face to be palpably false. I hoped thereby to get a better hearing than I got a year and a half ago. I am sorry that I failed. I am sorry that I wrote as I did. But I thought I had good intentions.

It is now apparent that the invaluable Canon of Ptolemy may be invalidated by another erroneous interpretation. Were it not for this, and the fact that my aid was solicited, and the further fact that I am jealous for the reputation of our very highest School of the Prophets, I would remain silent, and use my strength for other more pleasing projects.

I enclose three sheets, in which some things are perhaps simplified. If you will take the time to think through each of the brief consecutive statements, you will see the point. Be careful in reckoning the number of days between dates, keeping track of leap days.

In one of your letters you wrote, "On Friday we placed a set with one of the leading men at the Smithsonian Institute." You were speaking of Part V. That is
why I thought a copy had been deposited there.

I about to ask the return of the $35-$ foot, $\$ 40$ chart on Bible Chronology, which has been in your custody for over a year, but I want F. D. Nichol and \mathbb{M}. E. Kern to look it over first. Have written them.

P.S. You will note on sheet (2) enclosed another independent proof, from Ptolemy himself, that the era of Nabonassar was Feb. 26, not Feb. 27, in 747, confirming incontrovertibly the dates I gave for the 1 Thoth Table. If you do not think through the matter I am sending you herewith, no one else may do it.

I think I should enclose some additional matter, to further simplify one point.

I am anxious that we shall not unwittingly undermine the one invaluable and incontrovertible evidence that the Lord has preserved for us for establishing the date 457 BC .

A clear, accurate knowledge of the Canon of Ptolemy, and the evidence of its abseliute truth, is needed by $\not \subset$ our people, and should be fully set forth in our advanced schools.

Many of our best ministers and teachers have only partial knowledge, and many hazy ideas.

With all the wealth of library resources at Washington, there ought to be prepared by this Committee a muchmeeded document on the Canon of Ptolemy, and the eclipse evidence of its accuracy, for the use of all our ministers and workers.

Because " and everything will be said, even falsely, to becloud our best evidences for truth, and our workers should be prepared.

I feel, from many years of observation and contact, that most of our ministers could be confused by a misrepresentation of Ptolemy's Canon by our enemies.

Your Committee ought to prepare a comprehensive document, and it should be made a part of the mental equipment of every student who attends the Theological Seminary, and as far as possible of all our workers.

I believe that document should be a part of the fins report of the Committee.

The pay in which you have interpreted and handled Ptolemy's records of eclipses would prove him to be in error in the dates he has given.
$(x)=3: 53$ Alex. time
It would at the same time destroy the one great evidence for the date 457 BC , viz., the Canon of Ptolemy, the dependability of which hangs upon the accuracy of Ptolemy's records of the dates of eclipses.

Added to this is the thesis that Ptoleay reckoned his dates from noon to noon.

Your position makes the eclipse occur thus
20 Fharmuthi, the 230 th day of the Egyptian year, would begin at noon, Mar. 5, 236 AD.

1 Thoth would begin at noon 229 days before the noon of larch 5, 136, or at noon on July 20, 135 RD.

229d

$$
229 d
$$

Your Thoth table gives July 22 for 135 AD. There is a discrepancy of two days.

If your Thoth Table is correct, July 22 for 135 AD , then 20 Pharmuthi would begin at noon on larch 7 and and at noon on larch 8

Then, the eclipse which occurred on March 6 at $1^{h} 43^{\mathrm{m}}$ would have fallen on Pharmuthi 18 . Then, Ptolemy's record would be in error by two days.

The truth is: Ptolemy is correct; and,
You have made an error of one day in your Thoth Table, and another error of one day by assuming that ptolemy reckoned his days from noon to noon.
Here is the correct dating?

Your poaition would detroy the value of the Canon of Ptolemy for chronology, our groat evidence for the date 457 BC .

Because the accuracy of this chronological table hangs upon Ptolemy's accuracy in his records of oclipses.

Your position makes Ptolemy in errors The eclipse which occurred at Alexandria on May 2, 128 BC , at $6: 43 \mathrm{AM}$, Ptolemy says . wes "On the 11th of the Egyption Pharmuthi, . about 5 givil hourg before the noon of the 11th:
You have the preceding New Year, 1 Thoth, beginning at noon, Sop.25, 129 BC.
By this, 11 Pharmuthi, the 22lst day of the year, would begin at noon, llay 3, and ond at noon on May 4,128 BC.

Your interpretation would make Ptoleny record the eclipse as occurring on liay \&. " " " " " the ${ }^{\text {" }}$ "elipse occur on 9 Pharmuthi. " " " " Ptoleay in error by two days:

See 3 The eelipse which occurred at Alexandria at 2838 AM on Sept. 12,200 BC Ptolemy says (p 15, your MS) was 547 Egyptian years, 334 days, and $14 \frac{1}{5}$ hours after his "epoch" from which he measured his oxact time intervals. This gives noon, Feb, $26,747 \mathrm{BC}$, for tho epoch, or Era of Nebonnssar, which is accepted by the American Ephemeria. You have noon, Tob 27, thus making your succeeding 1 Thoth dates 1 day too late.

While Ptolomy counts time intervals from his epoch as from noon on Feb. 26, his calendar dates aro from midnight to midnight, as can be shown in many ways.

Your assumption that Ptoleny reckoned his calendar dates as boginning at noon, would still make hin in error by one day in his record of the above ecilipses evers though you corrected your Thoth table, and used the correot datey sept. 244

But astronomers all say that Ptolemy was correct. They do not egree with your interpretation. His calendar dates are reckoned as boginning and onding at midnight, in harmony with common usage.

Ptolemy must not be made to contradict himself in his records of other eclipses, by the interpretation you give to the oclipse which occurred on Sop. 12, 200 BC , at $2: 38 \mathrm{AM}$.

Ptoleny does not himself say that the eclipse ocourred on Mesore 5. He says that someone else had said sos "They say that the third eclipse occurred . . on the 5th Egyptian Mesore"

He hiraself says that the eclipse "was $24 \frac{1}{6}$ oquinoctial hours after tho noon of the 5 the: which would be on Mesore 6, not Mesore 5.

If you hold to your assertion that this eclipse was on the 5th, that Ptoleny himself says it was on the 5 th, thereby proving to your satisfaction that the date began and ended at noon, thon you make Ptolemy's records of several other eelipses to be in error, and thereby destroy the chronological velue of the inestimable Canon of Ptoleny, the one Irrefragable witness for the date 457 BG .

Note the comment on the eclipse of Nay 2, 128 BC , on the 21th Fharmuthi, where the diagrans prove that Ptoleny's aalendar datos begin and ond at midnight.

And remember thet he seid that the eelipse of Nerch $8,720 \mathrm{BC}$, messu植活x which wes "at the riddle of the night" at Babyion and $5 / 6$ hour before midnight, Alexandrian time, was "botwoon the 18 th and 19 the" of Thoth.

If he reckoned calendar dates from noon to noon, he would never need to use two dates, ss he does, for oclipses occurring in the night.

If he reckoned the calendar dates from noon to noon, he would be ambiguous in speaking of "qHi" noon of various dates, as he does.

How you made a mistake (D 15)

in your conclusions from the eclipse of Sep, 12, 200 BC .

You rightly give weight to Ptolemy's statement regarding the opoch he used. He used the term opoch, as astronomers do today, to designate a fixed moment of time from which to calculate, or to which to refer, positions of heavenly bodies at other times.

Ptoleny's epoch, the so-called "Era of Nabonassar," was 547 yeara (Egyptian), 334 days, and 14 hours before the above eclipse, which was on Sept, 12, 200 BC , at $2: 38$ AM by modern computation, but placed at 2815 AM by Ptolemy, aa best he could determine.

141 hours before that eclipse was noon on Sopt. 11. You seem inadvertently to have substituted Sep. 12, the day of the eclipse.

That noon of Sept. 11 was, as Ptoleny says, "the noon of the 5th"ikesore.
The 334 days reach back from 5 Hesore to 1 Thoth, from "the noon of the 5 th" $^{\prime}$ Mesore to the noon of thmecuramithanil I Thoth.

And 334 days back from noon Sept 11 reaches to noon, Oct. 12, 201. BC. Your mistake above results in an error hore, where you heve oct. 13 for 1 Thoth. This proves at once that all your dates in the Thoth Table are one day too late.

Then from noon of Oct. 12, 201 BC, 547 Egyptian years (137 days shorter than the Julian years which had 137 leap years in the intorval) reach back to noon, Feb. 26, 747 BC , and not Feb. 27, as you have it.

Ptolemy's "opoch", then, was noon, Fob, 26, 747 BG. This accords with the statemeth in the American Ephemeris for 1916, p xvii: "The Ere/ of Nabonassar, Wodnesday, the 26th of February, of the 3967th year of the Julien Period; corresponding in the notation of Chronologists, to the 747 th , and, in the notation of astronomers, to the 746 th year before the birth of Christ."

According to Ptoleny, the noon of Feb. $26,747 \mathrm{BC}$, was of necessity "the noon of" 1 Thoth, Just as the noon of Sep. $21,200 \mathrm{BC}$, was "the noon of the 5 th" Mesore.

Now then: If Ptolemy had himself said that the eclipse of $2: 38 \mathrm{AM}$, Sopt. 12 , 200 BC was on 5 Mesore, as you state, it would be a fair conclusion that he reckoned his celendar days as beginning at noon, and, from this, the noon of Feb. 26, 747 BC , mark the beginning of I Thoth.

But Ptoleny's record is, that some one else had said that the eclipse was on 5 Mesores "They gay that the third eclipse occurred . . on the 5th Egyptian Mesore."

His own statement is that the middle of the eclipse "was $14 \frac{1}{4}$ equinoctial hours after the noon of the 5 the" which, by his recorde of the other eclipses, was on 6 Mesore.

If Ptoleny reckoned his calondar days as beginning and onding at noon, each dayṕ would have two noons, and ho would be ombiguous in speakiing, es he repeatedly does of "the noon" of a day. No one could tell which one it was.

Ptoleny says that an eclipse in the "midale of the night" was "between the 18th and 19th."

If Ptolemy maed rockoned calender days as boginning at noon and ending at noon,
he would properly use only one date for an eclipse occurring in the night. But in such case he uses two dates, which would be meaningless if the date began at noon, but which would be vory proper, in order to sivoid ambiguity, when the calendar date ohanged in the night.

Furthermore, the accuracy of every one of Ftoleny's records of eclipses, as all astronomers admit, is absolute proof that he did not reckon his calendar days from noon to noon.

Take, for example, the eclipse which occurred at Alexandria on liay $2,128 \mathrm{BC}$, at 6:43 Ali, whion Ptolemy says was "On the 11th of the Igyptian Pharmuthi, . . about 5 civil hours before the noon of the llthe"
$\left\{\begin{array}{l}\text { By no possible means can ptolemy's universally admitted } \\ \text { accuracy in the record of this eclipse be shown, except } \\ \text { by recognizing that his calendar dates bogan and ended in } \\ \text { the night, ond not at noon. } \\ \text { You can easily convince yourself of this fact } \\ \text { by going over the statements about this eclipse, } \\ \text { with the diagrams, in this paper. }\end{array}\right.$

Ptoleny reukons from noon when giving the time interval of an astronomical
evont from his "epoch", which was noon, Feb. 26, 747 BC.

If we insist that he reckoned his galender dates from noon to noon, we shall thereby make many of his reoords to be in error.

In so doing, we undermine the one foundation which makes the Canon of Ptolemy an irreiragable witness to the accuracy of the date 457 BC .

Prof. H.A. Washburn, Route 1, Box $57-\mathrm{A}$. St. Helena, Calif.
Dear Professor:
Brother Froom did not tell me that he was sending you my disoussion of the papyrus problem, although it is all right. You should havo had Dr . Wood's part also, in order to understand the approach from different anglos. The subjeot will not be disoussed in the Committee until after the Mew Tear, and both Dr. Wood and yysels are doing all that we can to root out all error, whioh is prose to oreep into the first draft of any researoh. Wie are pretty muoh in agreement as regarde the Aramaio dates, and this phase of the problem is that whioh is of most importance with reforence to our whole subject of prophetse chronology.

Whethor the symchronization of the Aramalo dates with the Egyptian is a zoro or plus one difforonco is no matter, for that whioh sounts is a constant differenoe, which supports the form of Jewish reokoning upon which it is based, namely, the alternate 30 end 29 day sequenoe of the Jowith feast period. This feature of calondation was not takeys from the modern Jowish oalondar. I wA11 sond you the early sourcos on this point as soon as they can be assombled and copled.

In the mean time, if you are disposed to do further reading, the aocompazyiag article on the "Wednesday Cruoifixion" contains important reforonces on the subjoct of oarly Jowish oalendation. These eitations may be holpful. I have carefully reviewed all your oritical notes, and I see now from what standpolnt you have lsept weiti; Eldor Froom that the 1844 time atgunent is varoag. I belleve that when you get all the ovidence, both from the MIIlerito 1iterature, and from astronony, you will be delighted with the argunomt as waltom into Elder Froom's Syliabus.

As soon as we oan get the astronomioal souroes togother and copied, a copy will be sent you, and you shall havo a brilef statoment as to What the 1844 time solutson is, and an explanntion why an e.lisitude table for the visibility of the moon on the horizon, or zeariy so, at sunset oannot solve the problem. We havo this method by differont authoritios in Fronoh, Gorman and Latin; Fotheringham also worked out an altitude table from Oppolzer's Syzygion-taleln, and Sohoch as well. Fotheringhan's worle comes the nearest to suiting the problom. But not one of them comes any where near the ornalpizion date.

The mombors of our Commttee are grand poople. It is thrilling to seo thom tackle these tochaical questions -- alvags in an atmosphere of humor, oourtesy and kindnoss. Elder Mroom is an excollent chairman. If antogonism should entor, I think the worls would stop. But wo have leapt togother for two years now, and progress has boen made. In the offort to safoguard all the points at issuo, the final reports have been thus long delayed. Consequontly, your oriticisms are greatly appreciated, and so far as my own work is ooncerned, I shall endeavor to answer every point you ralse.

With regard to the Egyptian tables, how can you s.ccount for the exact length of P'tolemy's intervais, oach one of whioh reaches to the very oolipse, and begin with midnight? In a numbore of places, he ome phasizes his "noon" beginning, and I will send the teatementou. The Tables I will discuss in another lotter, but in the moen time, Elder Proom has.igent you a table that worles out the Assuan datos without the uso of ryupaole. Thancing you for your helpful lottor.

makes sense.

Route I, Box 57 A.,
st. Helena, California, December 5, 1940.
Dear Miss Amado,-
I very much appreciated your letter, which came night before last. I enjoy the diagrams. You have surely done a lot of very hard work.

My strength is so limited that I cannot write all that I would like, but will do what I can.

You evidently have not gotten my point about Ptolemy's not reckoning from noon. There can be no question at all about Ptolemy's having placed the precise moment of his "epoch" at noon, on Feb. 26, 747 BC , and in giving the interval of any event from his epoch, the years, days, and hours are counted from that noon.

Wat I urge is, that it be recognized that he counted his calendar dates, not from noon to noon, but from midnight.

I sent a page to Brother Prom regarding the eclipse"on 11 Pharmuthi, May 2, Mead 128 BC. You cannot possibly show Ptolemy to be correct in his record of that eclipse, if you hold that his calendar dates are reckoned from noon. But all astronomers and chronologers admit that Ptolemy was correct in every case.

When Ptolemy gives two dates for eclipses in the night, how meaningless this is, if we assume that his calendar dates began at noon. And equally ambiguous would be his repeated statements about "the" noon of a calendar date. And how could hosay that the eclipse of Mar. 8, 720, near midnight, was "between the 18th and 19th" of Thoth? os on the $18^{\text {at }}$ ti gt 18 Elis Tヴ 19 , /8 aw /9

The ere cooed not hive the marc, wowed it, wifhot liter I asked Brother Broom six weeks ago to kindly let me have the original Greek or esp/ ma$\frac{11}{} 15 / 16$ Phamenoth, $27 / 28$ Athelemy's double datings, represented by $28 / 29$ Thoth, $18 / 19$ Thoth, ion 19/20 Pharmuthi. He has probably overlooked the matter, but would probably have to refer the matter to you. I am sure he would not refuse this, inasmuch as, in response to his request that I give the matter "immediate attention," I gave a solid week of work at a time when we had to employ men to do the work which I had to leave in order to accommodate him.

I have gone over the Ararsic datings, with their Egyptian equivalents, and see that these Jews evidently celebrated the Passover, 14 Nisan, on the day of the full moon, not the day after the full moon.

Perhaps I should give the details:
I pass over "400", 523 BC , as your table does not give me the dates of new and full moon for that year. Wish I had them, to see if that document checks with the others, in having 14 Nisan on day of full moon.
"A", 471 BC. 18 Elul, 166 th day of ordinary Hebrew year, falls in with 28 Pachons, the 268 th day of Egyptian year. I Nisan would fall in with the 103 rd day,
if the new moons appeared in their average order of $29 \frac{1}{2}$ days apart. I Thoth falling on Dec. 19 previous, the 103rd day fell in with March 31. 14 Nisan would be 13 days later, or April 13. This would be the day before full moon, which your table gives as April 14.52. However, as the moon varies constantly in the interval from new moon to new moon, puthe new moon will be sometimes seen a day earlier or a day later than a date arrivêd at by reckoning that all now moons between Nisan and Tisri are invariably spaced $30,29,30,29,30,29$ days. We have evidence in the Talmud that in this period there were sometimes two 29 day months in succession. This record of itself alone proves that the Jews took the first appearance of the new moon for beginning their months (with the exception of Nisan, when athe full moon occurred more than 14 days after new moon)as in ${ }^{3}$ They sometimes had two 30 day months in succession. This would heve to be so, if the actual moon was observed, as we must believe it was.

If Ab happened to have 29 days in that year, 14 Nisan would have fallen (in the calendation of these Jews) on April 14, the day of full moon.

I think I should here quote the Talmud on this point, as it bears on the astronomical argument that has been put forth to establish the beginining of Tisri 1 at sunset on Oct. 12, 1844. The argument was used that the invariable succession of 30 , 29, day months from Nisan to Tisri fixed 1 Tisri at that point. But the fact is, that the ancient Jews, going by the moon itself, (which was absolutely invisible at Boston on Oct. 12, 1844), sometimes had a day less or a day more than 177 days from 1 Nisan to 1 Tisri. Your Committee has overlooked this point.

In Rodkinson's translation of the Talmud (N Y, 1896) vol 4, p 33:
"Perhaps Abh and Elul have each only twenty-nine days . ((The Rabbi was speaking That two consecutive months should each have twenty- of a certain instance)) nine days is a matter that every one would know."

Everyone who has observed the moon closely will know this, just as the Rabbi
said. The Jews knew it well. They also knew that sometimes two consecutive months would have thirty days each. This would have been the case with the month Elul in 1844, if the longitude of Boston had been the longitude for reckoning the dates which began and ended the 2300 years, and the middle of the 70 th week.
"B" 464 BC. 18 Kisleu, 254th day of ordinary Hebrew year, fell in with 17 Thoth. 1 Thoth was Dec. 17, 465 BC. 17 Thoth and 18 Kisleu fell on Jan. 2, 464 and 1 Nisan was then on Apr. 24, 465, and 14 Nisan on May 7. And May 8 was the day of the full moon.

Theleñod of 255 day reaches beco to dry by 18 kire I am disturbed a little by this dating, on Jan. $2,464 \mathrm{BC}$, and the statement you quote: "The beginning of the reign when Artaxerxes sat on his throne." By this, his decree would fall in 458 BC , not 457 . You will clear this up, surely, before you leave the matter. I would like to know your conclusions. The next document similarly.
"D" 21 Heswan, 228th day of ordihary Hebrew year falls in with 1 Mesore, the 331st day of the Egyptian year. I Thoth was on Dec. 16. I Nisan falls in with the 104th day, which was March 29. 14 Nisan would fall on April 11, the day before the full moon. But if in this year the new moon appeared on Tisri 29, making two 29-day months in succession, these Jews would have celebrated 14 Nisan on the day of full moon. ((If Nov. $12,460, B C$, the date of this document, was in the 6 th year of Artaxerxes I, then his decree could not have been issued in 457 . May this have been another Artaxerxes?
"30", 451 BC. 7 Kisleu was 4 Thoth. 4 Kisleu was 1 Thoth, which was Dec. 14 , the 348 th day of the Julian year. 4 Kisleu, the 240 th day of the ordinary Hebrew year, being the 348th day of the Julian year, 1 Nisan was the l09th day of the Julian year, or April 19, and 14 Nisan was May 2, which was the day of full moon.
"E", 446 BC , "year 19 of Artaxerxes the king." 3 Kisleu, 239 th day of ordinary Hebrew year was 10 Mesore, the 340th day of the Egyptian year. I Nisan would be the 10 and day of the Egyptian year. 1 Thoth was Dec. 13, and the 102nd day was March 24. Nisan 1 was March 24, the day of new moon (March 24.59). 14 Nisan would be April 6, which is two days before the full moon (April 8.89).

The same result is obtained, if 2 Kisleu be substituted for 3 Kisleu , and a 355 day Hebrew year be adopted, as per your Cycle table.

It seems that those Jews in this case began Nisan on the day of new moon, for 14 Nisan comes 2 days before the full moon.
((I am glad that this document so dates the years of Artaxerxes that the year of his decree falls in 457 BC))
" F ", 25th year of Artaxerxes, 440 BC . 14 Ab , the l32nd day of the ordinary Hebrew year, was 19 Pachons, 259th day of the Egyptian year. I Nisan was the 128 th day of the Egyptian year, which began Dec. 11, 441 BC. 1 Nisan would be April 17 and 14 Nisan April 30. Full moon was May 1.28, which would be 15 Nisan. If Tammus had 29 days in that year, the 14 th Nisan would have been the day of full moon.
"G". I do not see that any reliable conclusions may be gotten from this defective document.
"H". Similar.
"J" 3 Kisleu was 12 Thoth in 416 BC. I thoth was Dec.5, and 12 Thoth Dec. 16 . 3 Kisleu is 239 th day of ordinary Hebrew year, and 1 Nuisan would be 238 days before Dec. 16, or April 22. 14 Nisan would be May 5, which was the day of full moon (May 5.09).

24 Shebat was 9 Athyr, 69th day of the Egyptian year beginning Dec. 4. Document therefore dated Feb. 10, 410 BC. 24 Shebat being the 319 th day of the Hebrew year, I Hisan was 318 days before Feb. 10, or March 29, 411 BC. 14 Nisan was April 11, which was the day of full moon (April 11.68).

It would appear that these Jews made the full moon their 14 Nisan , and indongon thand not 13 Nisan. You seem to have a problem in these documents to harmonize them with the statement attributed to Aristobulus. It is true they prove that the Nisan new moon did not occur before the vernal equinox, and supports the barley-harvest Passover. It appears as though these papyrus datings introduce some new difficulties.

I cannot write more on this now.
It may be that you will not feel like following closely all these details until you are convinced that Ptolemy's calendar dates, and the calendar dates of these papyri, did not begin at noon, but I hope you will not for that reason lay them aside.

THE PAPYRUS DATINGS IN THE FIFTH CENTURY B.C.

As these documents are synchronized, they do not permit Nisan 13 to be the day of full moon. They do show that Nisan began with the new moon of the barley harvest.

In four instances, they make even Nisan 14 to occur before the full moon.
In three of these instances, like all the others but "A", Nisan 14 would fall on the day of full moon, if the following possible conditiontly existed:

Two successive 29-day months between Nisan and Tisri.

This is of course contrary to the rule you have laid down, that there must be an invariable interval of 177 days from 1 Nisan to 1 Tisri, as in the modern Jewish calendar, and that the lengths of the intervening months must always alternate between 29 and 30 days, as in the modern Jewish calendar.

But this rule, like the modern Jewish calendar, fits only the average, and, indeed, the usual, lengths of these months when dernaminerd begun immediately after the visible new moon. (I will not here stop to discuss whether or not the ancient Jews began their months immediately after the first visibility of the new moon. Your/statements in various papers I have seen are not consistent or harmonious on this point. If some of
,
|these statements are true, others cannot be; they destroy each other.)
The period from one new moon to the next is constantly varying, and while it averages a little over $29 \frac{1}{2}$ days (29.530588), the variation is sufficient to make the new moon visible sometimes at successive intervals of 29 days, and again there may be two successive intervals of 30 days each.

With the exception of Nisan in certain years, the Jews began their months when they first saw the now moon (as many times stated in ducuments which you cite as authority on other points). This of necessity resulted sometimes in there being two 29-day, or two 30-day months in succession.

first

In the Talmud, in the/chapter on Rosh Hashana, ($v 4, p$ 33, of Rodkinson's translation, NY, 1896) we have the following:
"R. Zera says in the name of R. Na'hman, in every case of doubt about the holidays, we postdate but never antedate. Does this mean to say that (in case of doubts concerning the exact day on which Tabernacles begins) we observe the fifteenth and sixteenth but not the fourteenth; let us keep the fourteenth also; perhaps Abh and Elul have each only twenty-nine days? That two consecutive months should each have twenty-nine days is a matter that every one would know."

It is important that wE should know this, if we would be accurate in our conclusions regarding the beginnings of Hebrew months.

We can be reasohably sure only as we ascertain the actual position of the moon itself, and decide upon its visibility with the naked eye.

I think I should here quote Kokisoff, whom you accept as authoritative regarding Karaite practicenmmiohmana: "According to circumstances, sometimes two or three months of 29 or 30 days follow each other."
"The Karaites reckon the first day of every month as from the now moon which is first seen with the naked eye."

This feature of Karaite practice is the undoubted continuation of the original Mosaic custom, and not a alyart of their revised practice since 1780 , for it is based wholly on observation alone, and conforms to the actual moon, not the average or mean moon.

I feel like going on from this to point out in a new way the error in the astronomical argument for Oct. 22, 1844. But my strength for writing is exceedingly limited, and, besides, I do not want to go into that laborious presentation until I know that it will be given full consideration, that I may not have to write it out a second time.
(I)

I will say this much: 人If Boston had been the meridian for the dates of the beginning, the intermediate portion, and the end of the 2300 years, then Elul, by the moon, would have had 30 days, and Tisri 29; and, the rule of the revised, computed Karaite colendar, not based on observation, that when the age of the moon is over 22 hours, it is visible on the following evening at susset, is demonstrably untrue on certain occasions. I have plenty of figures.

Professor H.A. Washburn, 3t. Helena, Calif. Dear Professor:

The pages which oame yesterday I already have a copy of, as Elder Froom gave me the same when he returned from his western trip. In this acknowledgment of your interest in this subject of chronology -an interest we greatly appreciate - - let me briofly mention two phases: (1) the Ptolemaio beginning of the Egyptian day, and (2) the Egyptian tables.

The first, as you yourself know, has been under disoussion for a long time by various soholars. It is possible that your own conclusions may ohange after a review of furthor evidence. Am enolosing the original text in Greek of your reference to the translated quotation in "Light for the Last Days " This quotation is one of the best, but it does not as yot tell me what it tells you. Enclosed is also the same in Cerman. Ptolemy says plainly that he wants to reduce the opochs under considera. tion to a noon beginning. And he dies that, as his dated eclipses show; for the "hour" item of each interval always extonds from the middle of each eolipse back to noon of the last day of each intervel. These last days of the intervals are only partial days, and honce thoy do not come into the number of days inoludod in the intorvals.

As soon as I can get the photostats made, I will send you what we heve on the meaning of Ptolemy's double dates. Ginzel and Lepsius disouss this. Am not sure that thoy are right in their docisions. Both Dr. Wood and myself are working on this, but for my own part, have not come to final conclusions. Personally, am very glad indeed to have you join in this research. We have found very few in the east who are intelligontly interested in this teohnloal phase of prophotio ohronology. Your idea that Ptolemy vas quoting from ancient records which doubledated the evonts in question is new to me. I had not thought of this, but the Greek "they say" is well worth comparing with all the other expressions.

As to the Egyptian tables, you diffor a littlo from Ginzel and Nougebauer, both of whom place the ohanges of Thoth on the leap day provious to $521 \mathrm{~B} . \mathrm{Co}_{0}$, and after the leap day from that date one If you oare to have Ginzel's Egyptian table, can send you a oopy. Neugebauer is about the same, only differently arranged. Wood and मyself seem to be in agreement now with reference to the Aramalo dates and the Egyptian tables with which they are assoolatod. At least, for mid own part, I am letting the Tables rest until we hear from Dr. O. Neugebauer (Brown Daiversity). At present he is dating the five major planets in anoient Egyptian time -- a problem which he has worlced from ounelform stones of Babylon and Egypt. His book will be out soon now. Ho told me last sumner that our present Egyptian tables make the celestial positions too early.

Last sumners Dr. Hood introduced the Aramaio papyri to the Comilitee, but the problem pras, 1 blolved on the basis of the Julian day numbers, whioh could not be qui.elcly oheoked. He proposed a zero-coinoldenee between the Aramaio and Egyptian dates, and his diagram had several zeros, all of wisioh seemed convincing. But the mothod vas oomplioated, and I went to $w o r i s$, if possible, to find a simplor solution, beoause of the importance
of the papyri in relation to early Jewish calendation. As the research thus far stands, we can say that with a February-26 beginning of the Nebonasser ora, there is a plus-one difference between the Aramaic and Egyptian dates of the paprili in the fifth century B.C. This difference may have been due to Grecian influence. The Athenians began their months with the conjunction, and the Calipples with the earliest appearance of the new moon -- but I should not be giving reasons as yet. I will shortly send you all the references we have on the phasis. They have not yet been copied. Have much to do like everybody else.

What I have written shows the unfInished state of all the problems under considerations. These are hard subjects, but the Committee makes everyone play safe, and not jump to conclusions. The various workers have much else to do besides beanies this work of research, and the advance is slow. I hope that you will have time to write again after you have the oltations on the phasis and the Jewish new year; which seem to be closely related to che 1844 chrnolog 4 .

Yours very sincerely.

December 10, 1940, General Conference. Takoma Paris. DoC.

Dear Miss Amadon, -

I have just gotten out of a bed of sickness, and will type a note and mail your letter. I have some other things which I shall send to Brother Froom. I want to thank you for the photostats. I prize them. I thenk you also for the revised charts bearing dates of Oct 5, 23, Nov 5 .

Did you find that your dates for new and full moon as given in your discussion for the year 411 B.C. were wrong? If so, what are the correct times, according to your authoratative astronomical documents? OR, did you conclude that the astronomicel dates for new and full moon in that year were wrong, FOR THE REASON THAT THEY DID NOT FIT A THEORY YOU HAD? upon authotitative moon tables for that year did not harmonize with a curve of translation periods which you had made; and then, upon the supposition that your theory was correct you rejected the moon tables. Is that putting it too strong? The very fact that the moon itself in that year did not fit your translation period curve, is an evidence of what I say in my letter, that the moon does not always fit the averageposition ealendar of $30,29,30,29$, in unbroken sequence from Nisen to Tisri,

I hope you will study what I have w ritten until you have my thought. I have been sorry that some of my letters to Brothe r Froom and others were not carefully thought through.

Now as to your last valued letter, of Dec. 10. You write that mynview regarding the Ptolemaic beginning of the Egyptian day "may change after a review of further evidence." I shall be glad to see this evidence, for I do not believe in suppressing anything that seems to be opposited to the truth. We are on dangerous ground if we do not weigh the argumens of our opponents. And in submitting evidence to the Committee, that which is against what is thought to be true should be mentioned as well as the rest. For instance, the eclipse "on 11 Pharmuthi", 128 B.C., should not be omitted from the chart of oct. 23. That eclipse alone proves that ptolemy's calondar dates do not bogin at noon.
elen though youAnd the evidence you give me in this letter confirms me the more. Guinness proves to have given a good free translation, not literal, but true to the thought, of Ptolemy's time of the eclipse in 720 BC . The original greek, 18 ois ten 19, is 18 to 19 . So is the French translation in the adjoining column, 18 au 19,18 to 19. And the German, "am 18/19 dgyptischen Thoth" plainly means the same. It might. be written 18-19. That expression would be senseless of on eclipse in the night, if the calendar date feached from noon to noon.

In your discussion, you seem to convey the idea that the double dating was for the purpose of giving the difforent dates for Babylon and Alexandria. But this could not be. A lunar eclipse is visible at the same instant to everyone on that half of the earth which is turned toward the moon, and the date would be the same in Bebylon as in Alexandria. The only difference would be that a clock in Babylon would be about 50 minutes faster than the clock in Anexandria.

I wonder from your letter if you still think that I deny that Ptolemy reckoned from noon, when giving the interval from this epoch to an astronomical event. That is perfectly plain, but the question is with reference to his calendar dates beginning at noon.

I did not wish to convey the idea that Ftolemy quoted ancient records "which double-dated" events. They did not necessarily double date, of the eclipso in question"they" had said that it was on 5 Mesore, but evidently were a little inaccurate as to the middle of the eclipse, which Ptolemy found at Alexandria to be a little after midnight, $14 \frac{1}{4}$ hours after "THE" noon of the 5 th.

Yos, I would be glad to bave you send me a copy of Ginzel's Egyptian table. I wonder if you said just what you intended to say with reference to Ginzel and Neugebauer, "both of whom place the changes of Thoth on the leap day lyear?l

$$
\text { previous to } 526 \text { B.C., and aftor the leap day lyear? }
$$

from that date on."
Did you not mean to say "before the leap year from that date on"? The first of these statements is bad enough, regarding one who is supposed to be authority, but the second is unthinkable.

From a scrutiny of Ginzel's Thoth dates for the Ganon of Ptolemy, I find him strangely contradictory.

Fol 629.

The charge In his dates for the kingsobo the Caption, it is evident that Ginzol did make the change of date of 1 Thoth in the leap years $733,721,709,693,625,561$, and 529 BC. But this would be impossible, in this period. For instance, 745 BC was a leap year, with a Feb. 29. The first 365 day year from the era would end on Feb. 25, 746. The second year of the era would begin on $\mathrm{Feb}, 26,746$ and end on Feb. 25, 745 furmpnyoman. I Thoth would fall on Feb. 26 again in 745 fear, it could not change to Feb. 25 in that leap year, for there would then have been only 364 days in the year preceding. There would also be 366 days from Feb. 25,745 to Feb. 240,744 , whereas the Egyptian year had only 365 days always. Ginzel would have these two impossibilities every four years, and Neugebauer also if he is correctly quoted. We must always check on our authorities whenever possible. Great men make mistakes just as we do.

Ginzel says that the era of Nabonassar was 747 B.C. Feb. 27. But you will note that this day he calls Feb. 27 is the same one that we call Feb. 26, for he says, "Der Kano beginnt. . mit 27 Februar 747 v. Chr. (astronomisch Nom Mittag Les 26 But Ginzel $\frac{\mathrm{Febr}}{}{ }^{\prime \prime}$

But Ginzel repeatedly abandons this Feb. 27 date. You will notice that all his dates for \bar{l} Thoth in the years of these kings are exactly as those I gave, with the sole exception of Feb. 27, 747, and the misprint of Aug. 11 in 54 A.D.

In the following thirteen instances before 521 BC his date for 1 Thoth is one day earlier then it must necessarily be if the epoch was on Feb. 27: 731, 726, $704,702,699.692,688,680,667,647,559,555,538 \mathrm{~B} .6$. From Dec.31. I do not make comparisons on this point after 521 BC. You say that after
$5 / 8$ to Dec 31 that year he changes the date of I Thoth on the years after leap years. This 578 to Dec $3 /$ would give Jan 1 for the leap year 52l, and also Dec. 31 in the same year, if we
have 366 da and from Dec.31,5゙17 Fo dec. 30,576 . he wow have
364 days and same $=$ itereaple
recognize the invariable 365 -day year. If he has Jan 1 for 521 , and Dec. 31 for 520 , $519,518,517 \mathrm{BC}$, with a change from Dec. 31 to 30 in the year 516 , a year following a leap year, then this great man has made the same mistake that many other lesser ones have, overlooked that between Jan. 1, 521, and Dec. 31, 520, thee is not one Egyptian year merely, but two. I do not have your discussion with me, but it seems to me that your Thoth table read thus. I wonder if Neugebauer makes the same mistake, not giving two Thoth dates to 521 BC .
as What I have written regarding Ginzel's dates will be very apparent if you do as I have done, set down the years from 747 BC to 240 AD , and opposite each four columns: (1) The date for 1 Thoth if it were Feb .27 in 747 , and changed 0N the leap year before 521 ; (2) The date for 1 Thoth if it were Feb. 27 in 747 , and change always (as is actually necessary before 521) in the year following a leap year; (3) The date for 1 Thoth if it were Feb. 26 in 747 , and changed, as it indeed must, in years following leap years; (4) the date Ginzel gives for each of the years ho

By the way, the dates for 1 Thoth, in the years which the Canon starts the leladmif kings, which I have given, and which I believe Guinness gives, and which every other flu writer I happend to read gives, (until what you cite, is what as a denomination we already have in print. The Spurce Book has this. And I judged from your new diagram
 back on it, against those infallible eclipse dates.

If Ginzel did change the date of 1 Thoth in years following a leap year after 521 BC , then he has contradicted himself in giving the same Julian date, July 30 , both for the leap year 96 AD and the following year, 97 AD . But I would like to see his complete Thoth table before taking more time on this.

I hope you see clearly why y the change in I Thoth date before 521 BC must be on the year following a leap year, and after that on the leap year itself, 521 having two dates. And I hope you see clearly that Ptolemy's eclipse intervals from his epoch place that epoch at noon of Feb . 26 , and that it vcannot be moved by a single hour, much less a day. Remember also that the Ephemeris recognizes this.

I am sending, soon, to Brother Prom, something that touches upon your "plus-one difference between the Aramaic and Egyptian dates." There could be no such difference in all the papyri, written in different years, by different persons. You may be disappointed in what I send, but cont forget that we must look at AL facts.

Yours sincerely,

Digitized by the Center Af Nreothismen

Dear Brother Froom, θ -

Thank you for your kind wishes for the New Year, all of whe I very heartily reciprocate.

I thank you for the enclosed Thoth Tables of Ginzel, to which Miss Amadon referred. I see that this is from a book published in 1911, whereas the matter previously sent me was published in 1906. I see that all the mistakes which I pointed out in my letter of Dec. I4 to Miss Amadon, have all been corrected in this edition of Ginzol. This list is all right. It is precisely, in every detail, what I have written from the first. This list of I Thoth dates may be used with confidence, for it can be proven correct from several viewpoints.

In this table, Ginzel abandons his Feb . 27 date for 747 , as he in effect does several times in his dates connected with the Cenon of Ptolemy.

I notice that Ginzel does not give any 1 Thoth dates previous to 747 B.C. I wander if in some previous work he gave dates for previous years, in which he assigned Feb . 29 as the Julian date for 1 Thoth in four consecutive years, as Miss Amadon did for years $757,756,755,754$ B.C. Of course, there could be only one year with 1 Thoth on Feb . 29, for there are never four consecutive leap years in any calendar. Feb. 29 occurs only every fourth year.

I think I shall enclose a sheet on these Thoth dates, which I wrote out about a month ago.

In the photostats which you enclose, there are numbers inserted with a pen every four years, beginning with 744 , and a note, "Leap year numbers are not in the original text." These numbers then, seem to be inserted to mark leap years. But 744 was not a leap year, nor are any years BC which are divible by 4. The years divible by 4 are all years following a leap year. Year 4 AD was a leap year, and the next previous leap year, four years before, was $1 B C$, and others 5B6, $9 \mathrm{B6}, 13 \mathrm{BC}, 17 \mathrm{BC}$, etc.

T think this mistake in marking leap years is the reason for Miss Amadon's

[^0]statement in her last letter to me, under date of Dec. 10: "Ginzel and Neugebauer place the changes of Thoth on the leap year previous to 521 B.C." If she had these sheets before her eye when she wrote that statement, she must have taken the numbers in pen as indicating leap years, without noticing that these pen-written figures do NOT mark leap years from $744,740,736$, etc.

The one who placed those pen-written f figures opposite the supposed leap years, evidently thought that every fourth Egyptian year would be a leap year. Leap years (true leap years) are marked in the latter part of the list, and back to 517 BC , which is marked \#58. Opposite 521 BC there is no pen-䜣itten number, but opposite 524 BC is written \#56. There were 8 Egyptian Weary \#ear's Days in that period, two in the year 521, but there were only 7 Julian New Year's Days. There was a change in the Julian date of 1 Thoth in 524, but, like all other years between 757 BC and 524 BC , the change occurs in a year following a Julian leap year.

I feel encouraged by your letter to go on and finish some matter that I have had in mind, and send it to you as soon as my strength permits me to write it out, with the illustrative charts.

My der Roy, I know exactly what I have I have made my criticisms of your astronomical argument for oct. 1844. And you will yet acknowledge me to be right, and that you have been in error.

Just one word in reference to your previous letter: I certainly would not violate a principle of Christian ethics in writing about a matter placed with me in confidence to one to whom the matter had not been presented. I had had previous correspondence with Professor Kern, and I alluded to the matter of the Jewish Galendar in the Fifth Century BG because you definitely wrote me that the matter had been before the Committee. I meant no wrong. Forgive me. Yours sincerely,

1460 Julian years equal 1461 Egyppian years.
In each 1460 year period,--
(a) L Thoth moves round the entire Julian year.
(b) 1 Thoth occurs on Feb. 29 only once, as in 22,17 and 757 B.C. (Impossible to fall on Feb, 29 four years in succession, as per faulty tables)
(c) 1 Thoth occurs on each of the other days for 4 consecutive years.
(d) 1 Thoth occurs twice (on Jan 1 and Dec 31) in one year of the 1460, as in 3441, 1981, 521 B. C. (and 940 A.D. had there been no reform in the calendar in Egypt)

The Change in Julian Date of 1 Thoth
occurs of necessity only
(a) In leap years when 1 Thoth falls on dates between Feb, 29 and Dec. 31, as in BC 3441 to 2217 inclusive, 1981 to 757 inclusive, and BC 521 to (704 AD had there been no reform in the calendar).
(b) Following leap years when I Thoth falls on dates between Jan. 1 and Feb. 28, as from BC 2216 to 1982, and 756 to 521.

Portions of a correct 1 Thoth Table

The above dates are fixed independently by each of Ptolemy's Egyptian-dated eclipses, and also by the testimony of Censorinus. All are in harmony, without exception. (Censorinus regarding the date when he was writing, 239 AD)

The Roman date, 7 Kalends July, of Censorinus did not begin at noon.
1 Thoth coincided with it, and did not overlap two Roman dates, as would be necessary if it began at noon.

Did any nation ever reckon their civil dates as changing at noon, e.g., the forenoon Sunday and the afternoon Monday?

St. Helena, Calif., January 9, 1941.

Dear Miss Amadon,-
Two days ago I received a note from Brother Froom, enclosing a photostat of Ginzels tabid of Thoth dates.

This table, published 1911, is in every respect in harmony with what I have s aid from the first, it is exactly correct.

He must have discovered the mistakes in his work of 1906, connected with the Canon of Ptolemy, concerning which I wrote you. Too bad you did not have this when you made out your table.

I note the numbers l-212, written with pen opposite 744 BC and every fourth year until 524, all of ther years following a leap year, and beginning with 517 the numbers are opposite leap years. These are all years on which Ginzel changes his date for 1 Thoth.

The note you have inserted reads "Leap year numbers are not in the original list." I do not see why these numbers, $1-56$, could be called "leap year numbers". when they are not placed opposite leap years, but on years following leap years, til 524 They could properly be called"leap year numbers" from 517 on, Numbers $58-212$.

Brother Froom said he sending the pages from Ginzel which I "so greatly desired." I was indeed interested in them, after what you wrote, statint that if I cared to have a copy you could send it.

But what I actually and decidedly "greatly desired" I have not received.
I have received nothing on the original greek of the expressions in the German translation represented by the double dates separated by a / .

You sent a page which gave the original Greek with reforence to the 18/19 Thoth, 18 eis ten 19, in i is Tilv $c \theta$, with the parallel French "đu 18 au 19 " (which, by the way, a scientific scholar, fluent in scientific French, translated upon sight precisely as Guiness did, "between the 18th and the 19th", a free translation. He also said it might read. "from the 18th to the 19th." Greek scholars to whom I submitted the original rendered it just as I wrote to you.

I suppose that all the double dates in Ptolemy are just like this one, a date followed by eis ten, $\in i S T \eta V$, then the other date. They would all be translated as the case mentioned above, and indicate dates which changed in the night.

I hope it is not because it is feared I might build an argument upon them that they have been withheld.

It distresses me to see suppression of evidence, wherever it occurs. I was sorry to see in the list of NINETEEN LUNAR ECLIPSES QUOTED BY XXXXXNX CLAUDIUS PTOLEMAUS that the eclipse of May 2, 128 BC , on the 11 Pharmuthi, was omitted, together with its interval from Ptolemy's epoch, the noon of I Thoth in 747 BC . I believe I asked for the interval of this eclipse from the epoch. If I omitted to ask for this before, I ask for it now. I expect it to be $619 \mathrm{y}, 2$

The first thing that I asked for in my letter of Dec. 14 was the authoritative
dates for new and full moon in 411 B．C．In your table on page（3）of your general presentation you gave the dates as March 27.24 and April 11．09，From this you had J．C．T．G．M．T． for Nisan 13，April 11.68 J．C．T．，for Nisan 14 you had April 12，for Nisan 1 you had March 30，and the translation period 2.50 days．

Then on your chert of Oct．5，1940，ANALOGUE OF ANCIENT EGYPTIAN，JENISH， AND MACEDONIAN DAWES，you changed the date of 14 Nisan from April 12 to April 13， and I Nisan from March 30 to March 31，and on your chart of Nov．5，CONSTRUCTION OF ARAMAIC CALENDAR IN THE TIME OF EZRA AND NEHEMIAH，you changed the translation period to 3.52 days and modified the graph accordingly．

You did not indicate that the dates for new or full moon had been incorrectly recorded in your first presentation．

On your Oct． 5 chart，＂ANALOGUE，etc＂．，you place＊＊after March 31，the date of 1 Nisan ，and a state ina note：
＂The translation period demands Mar 31 for 1 Nisan，
of which date the Ginzel table runs a little short．＂
The only apparent reason for the change was not a more correct moon table which you had found，which proved Ginzel to be in error，but it appears as though you thought Ginzel to be in error because his moon table gave results at this point which did not fit a theory you had．Ft looks as though you had concluded that you had discovered a cycle，with a graphiflich a correct translation period would harmonize．The translation period from the authoritative moon tables did not give a translation period which fitter your graph．It then appears as though you substituted other dates on your later charts，contrary to the actual tables of the moon．

Our enemies，if they saw such a presentation，published by the denomination， say，would at once declare this to be a falsification of evidence，not mere suppression．

I fear that you have formulated a theory here to which you have attempted to make the actual moon conform，a theory which is erroneous because it does not harmonize with the real moon．It is similar to your phasis curve in Part V in which（page 35）＂we see the combined result of AL L the causes which conspire总 to hasten or retard the visibility of the nascent moon．＂On that page you proceed correctly to name the three causes，but you（I mean this pronoun in the plural） did not perceive that only one of them，Anomaly，is represented in your curve， Diagram C．（I propose to send something on this soon．）

In looking back over my correspondence with reference to Part V ，it is clear that what I have submitted has not been thought through．And the reason，I have decided，is because a number of things in the presentation in Part V were not thought through，so that a real comprehension wa so obtained of what was being dis－ cussed，and of the meaning of the quotations from Hevelius and Fotheringham． I will gond some charts which will make this clear．The statements of Part V itself will prove，will decide，the question that has been at issue．

I hope you will see the note I typed on the back of the last sheet of my letter to Brother From，referring to the $\$ 100$ I am willing to forfeit，and what I

Yours sincerely，

"I asked Brother Froom six weekd ago to kindly let me have the original Greek of Ptolemy's double datings, represented by $28 / 29$ Thoth, 18/19 Thoth, 15/16 Phamenoth. 27/28 Athyr, 17/18 Phamenoth, 28/29 Epiphi, 3/4 Tybi, 24/25 Phamenoth, 19/20 Pharmuthi. He has probably overlooked the matter, and would probably have to refer the matter to you. I am sure he would not refuse this, inasmuch as, in response to his request that I give the matter "immediate attention", I gave a solid week of work at a time when we had to employ men to do the work which I had to leave in order to accommodate him."

In the margin opposite this paragraph I wrote; according to my copy, in pencil, "Please give me this."

Excerpt from your letter of Dec. l:
"Your criticisms are greatly appreciated, and so far as my own work is concerned, I shall endeavor to answer every point you raise.
. . . In a number of places, he XPtolemy emphasizes his "noon" beginning, and I will send these statements to you."

I understand perfedtly that Ptolemy counts his time intervals from his epoch as from the hour of noon, on $\mathrm{Feb}, 26,747 \mathrm{BC}$.

But he does not say that 1 Thoth, or any other calendar day began at noon.
The only time interval which I desire is that which Ptolemy gives for the eclipse of May 2, 128 BC, "on the llth" Phanmuthi, "about 5 civil hours before the noon of the llth."

When Brother Froom sent me Ginzel's Thoth table, which he thought I "so greatly desired," he must have forgotten the request for something much more desired, which I sent him over three months ago, and which I repeated on Dec. 5, five weeks ago.

St. Helena, Calif.,
January 12, 1941.

Dear Brother Prom, -

I have written a letter to Miss Amado, and wanted to write some the same matter to you, but have not the time now. I accordingly enclose her letter, which you may read and hand to her.

I enclose 2 or 3 sheets which I wrote some time ago. I have other matter, but I fear you are not prepared for it.

I have concluded that I must greatly simplify some things which I have alluded to several times, and also simplify some things which you have in Part V of your general presentation which you evidently did not get an understanding of yourselves.

There are some astronomical facts which are there presented, and correctly, but thereafter they were either forgotten or were not clearly understood when first written. They will show, without the use of the abundant other matter which I have, that you have drawn conclusions, unwarranted, from some things you have stated, which h you did not understand.

I have indeed made strong statements of fact, and I stand by every one of them still, for I know whereof I speak.

I have not considered you "obstinate," to quote the word from your last letter. I consider you honest, but ill-informed, and therefore very positive.

And please look over my letters, if you wish, and note that I have not anywhere attributed anything wrong or unworthy, or unchristian, or unethical, to you in any of them. I have only condemned certain statements and opinions as erroneous. I think I have written nothing that could be called censure or reproof, or an imputation of pride of opinion, or a setting-up of yourself as an authority.

And I humbly feel that I have not merited anything of this sort myself.
I repeat the statement in my last letter, which contains in it the evidence of my confidence in your honesty and integrity: You will yet acknowledge me to be right in the question that has been up, and that you have been in error, or I will pay to you one hundred dollars out of my meagre savings, to be devoted as a gift to our foreign mission program.

This is confidence that you will yet do what I think you have not yet done, -- think through what I shall send you. I shall try to make it more simple and easy this time, with the customary HAW diagram and chart method.

When your own previous statements convince you, then it will probably not be necessary for me to write out the mass of matter which I have on the matter.

> Good night (11:30 PM) and God bless you:

[^1]Title of an excellent diagram bearing date of 00 t. $23,1940$.
These oclipses all demonstrate that 1 Thoth fell on Feb. 26 in 747 B.C.
They are equelly clear, us always edmitteds that Ptolemy, in giving the interval of an astronomical event from his epoch on Feb . 26 , chose the moment of noon frors which to count the number of years, days, and hours.

They do 110% prove thet Ptolemy counted the calendar dates as boginning and ending at noon.

There was $0 \mathbb{N}$ ITTED from this list the eclipse numbered 10 on pages 4 and 20 of the original presentation.

This omitted eclipse proves the some thing as the rest of the oclipses, but it proves somothing else as well.

It proves that Ptolemy's galendar datea did NOZ begin at noong but in the night, as do other of his records.

The eclípse occurred on hay 2, 123 B.G., at 6:45 A.h., Alex.Civil Time.
Ptolony rocords it as "on the llth" Phermuthi, "about 5 civil hours bofore the noon of the 11th."

5 hours before noon on 11 Pharmuthi coincides with 6:45 All, Wiay 2, 128 BC
In order to support the contention that Ptolemy reekoned hie celendur dates from noon to noon, one must plese 21 Pherumthi and I Thoth on the accompanying diegran either as indicated by the green or by the red.

In the one gaze, 12 Pharmuthi beginning at noon on liay 2, the eclipse of 6:45 MM could not occur on 11 Fharmuthi, as Ptoleny records.

In the other case, 11 Pharmuthi beginning on May 1 , at noon, the eclipse could indeed oecur on 11 Phamrathi, 5 hours before its second noon.

BUT, this would make 1 Thoth in 229 B.G. to begin at noon on Sopt, 23 ,

The $O N L Y$ way in which all the records of eclipses hamonize is by allowing that Ptolemy's calender dates changed in the night.

This alone saves many of Ptolemy's statements from boing meaningless and ambiguous, as well as incorrect.

This alone enables the Gaivon or PROLWIY to be supported by the records of all his ociipses. Any other position weakens the authenticity of that invaluable chronological cocument.

The Ecelipse on 11 Pharmuthi，May 2， 128 B．C．，is not the only proof that Ptolemy reckoned his calendar detes as changing in the night，not at noon．

Ptolemy gives two dates for eclipses in the night，as shown many times in matter presented to the Comittee．

With reference to the eclipse of March 8， 720 B．C．，the original Greek iss

Thoth

18 to

テウン
the
au 19 du ogyptien mois Tho

The German：＂am 18／19 agyptische Thoth＂ ＂on the 18－19 Egyptian Thoth＂

Guinness English：＂between the 18th and the 19th of the Egyptian month Thoth，＂ and this is the precise way that a teacher fluent in scientific French read it off to me，then giving it more literally，＂from the 18th to the 19th．＂

Every college teacher of languages to whom I have show these versions agree that the idea is clear that the eclipse occurred in a night during which the calendar date changed from the 18 th to the 19 th．

If Ptoleny＇s calendar dates began and ended at noon，each night would be completely embraced in a single date，and the naming of the following date would not make sense．

Similarly，Ptolemy would be utterly ambiguous in speaking of＂the＂noon of a date，as he repeatedly does．If the date began and ended at noon，there would be two noons associated with each date，and no one could tell on which date the eclipse occurred．Ptoleny＇s indefinite record would then have no scientific value．

The eclipse of June 18， 382 B．C．e， 8,53 P．M．，Ptoleny says was＂on the 24th to 25th Egyptian Phemenoth，＂beginning＂7 $3 / 5$ equinoctial hours after the noon of the 24 th，＂with the middle＂ $1 / 10$ equinoctial hours after the noon．＂

If Ptolemy counted the calendar dates as boginning and ending at noon， he has not told here on what day the eclipse occurred；he is utterly ambiguous，and is the same in the other instances．If he began his calendar dates with midnight， as proven by the eclipse of May 2， 128 B．C．，then all his datings are clear and definite，and his reforence to＂the＂noon entirely appropriate．

First, it should be made clear, in the handling of Papyri "B" and "D", how their references to the year of Artaxerxes can permit his seventh year to reach over from 458 to 457 BC.

A document dated in Jenuary, 464, as in the reign of Artaxerxes, "the beginning of the reign when Artaxerxes sat on his throne," would not permit, so far as appears on the surface, his giving his decree in 457 BC.

Document "D", dated November, 460 BC, "the sixth year of Artaxerxes," would also seem to militate against the date 457.

I hope you will be able to clear up this question.
While the datings of these papyri clearly show that Nisan began with the new moon after the vernal equinox, they conflict with the postulate that Nisan 13 was the day of full moon. Their datings show that they placed the l3th of Nisan one or two days before the full moon. It would appear, from certain considerations, that Nisan 14 was placed by them on the day of the full moon.
in
I tabulate the documents which are clear and definite, fimminime years for which your table gives the times of conjunction and full moon.

From the known times when I Thoth occurred in each year, the synchronisms enable us to locate the Julian date for 1 Nisan, as used by these writers. The ordinary 354 day year is used here. This permits the location of their 1 Nisan as close as possible to 1 Nisan of the Postulate. Any changes will place the Passover, 14 Nisan still earlier than the full moon.

The last three colurns are significant. They show the calendar usage of these writers. It looks disturbing to the Postulate, that 13 Nisan fall on day of full moon, and Nisan 14 on the day after the full moon.

The divergency cannot all be errors, in these legal documents, drawn up at different times, and by different persons.

This presents a now "calendar problem."

Professor Harry Weshburn, St. Helena, Callf.
Dear Professor:
If you will review the sources given in the "Wednesday Crucifixion, "you will find some of the important statements that pertain to the location of the ancient Jewish 14 Ni san. I really have not had time as yet to assemble all these excerpts, and translate them. Now with reference to some of your criticisms -- please allow me to seleot those that are of most importance to the problems in hand. I will mention three:

> 1. The ohallenge that the Aramaeans "leept the pessover" on the day of full moon.
> 2. The refusal of the right to compute 1 Tisri as a constant period from I Misan.
> 3. Tour several times repeated statement that our Millerite reckoning is wrong -o that is, the method of computation.

For neither Nos. 1 and 2 have you ae yet offered any accoptable authority or argument. The Arameans kept no passover at all until 419 B.C.e, when an order from Darius II over-ruled Egyptian prejudice for a short time. And if the 14 Nisan of the Aramaio dates wore always made to coinoide with the full moon date, no regular synohronism with the Egyptian datos results. And as for the day previous to full moon, Sidersky decleres plainly that this dating is out. Your own argument is useless, for it is besed on "iP" this and that. Ginzel, Shurer, Fotheringham, Knobel, Cewley and others, all tried 14 Nisan on the day of full moon, and their results came wide of a constant synchronism with the Egyptian dates. Sprengling makes the Aramaio date Identical with the Egyptian date, the same as your own reckoning. The others also make this correspondence. It moans this -- take Papyrus B, for example, where 18 Kislou you make identical with 17 Thoth on Jan. 2. Henee, the first day of Kisleu would equal Dec. 16 and the previous conjunotion was Dec. 15.04 (J.C.T.). Translation period would then be only 16 hrso , and this at the height of the translation wave, whioh is alvays over 2 days in the fall of the year !

Now try out Papyrus E in 446 B.C. If 2 Kisleu equals 10 Mesore on Hov. 18, then 1 Kisleu equale Mov. 17. But the previous conjunotion was Nov. 16.25 (J.C.T.). Translation period would then be .46 day, or 11 hours, and this again at the very height of the translation vavo, where the periods in the fall should be over 2 days long. If in this samn papyrus, wo tako 1 Kisleu $=$ Nov. 16, as the reoord might imply, then the phasis would come before the conjunction. In briep, it can be conoluded that by this rule of correspondence, the translation periods do not fit the dates I And therefore, neither does your argument. With regard to No. 2, I have some material about ready that will answor this ohallonge, and if you will be good and not send your oriticism to everyone else but me, I will send you the pages when they are ready.

No. 3, of course, is of Vital importance to every one on the Comsttee. But you will have to show me that you really have some-

Problem: When, where, and on what basis could luni-solar oalendation be established in 1844?

Argument --
(1) If Ootober 12 sunset on the Boston meridian be selected for observation, then TIsri new year is not a.1lowed to begin ${ }_{\Lambda}$ beccuine the new moon could not be seen in Boston that evening! Same rule would also fit Greenwioh, Jerusalem and feningrad, extremes of latitude in the east; but in the west, and on the gulf praflonger translation period allowed the moon to be seen at sunset of October 12.
(2) If April 18 sunset on the Jorusalom moridian be seleoted, then it is allowed by some that the Nisan new year oan begin, because it is roported that the new moon aan certainly be seen in the "piercingly clear" atmosphere of Jerusalem, when on the horizon for an hour after sunset -- 54 minutes in this instance. But if this date be taken for the Nisan new year in Jerusalom, then each phasis for Sivan, Ab, and Tisri would have ooourred on the very day of sonjunction -- an impossibility bocause the translation periods would have been a.ltogether too short. Hence April 19 sunset has to be taken for the beginning of the Hisan new year in Jeruselem.
(3) But in Boston, on April 18 sunset, the moon surely could be seen, because on the horizon 86 minutes after the sun went down; and at the ond of $30^{\mathrm{h}} 49^{\mathrm{m}}$, which had lapsed since conjunotion, the moon had moved at least 15 degrees east of the sun. On this date she was 19 degrees north of the celestial equator, and 2 or 3 degrees north of the sum. Therefore, the moon could easiIy be seen on the Boston meridian at sunset of April 18. But if Tisri new year campot begin at October 12 sunset, beoause moon could not then be seen in Bostor, then more than 177 days lapsed between IIIsan and Pisri new years in Anorioa, while in Jerusalem, the interval between April 19 sunset and Ootober 13 sunset -both dates imperative because of the position of the Sivan, $A b_{3}$ and Tisri pha-

This paradox demonstrates that luni-solar time cannot be regulated by the moon's visibility alone, especially in the extremes of latitude in the fall of the year. On the contrary, the spring moon anywhere oan he used as a guide to oalendation. The error in the foregoing argument (corisistes in the place and time of observation, when the Tisri now moon is frequently not seen at all, espeoially in south latitude, as was the case on Ootober 12, 1844. The moon was also far south of the equator on this date, and the observer far northl of course the moon could not be seen under these extreme conditions. Nevertheless, the calendar had to advance a day because of the demand of the Nisan date for now year both in America and in Jerusalem. Your applioation of the Hevelius rules seleoted, entirely omits the position of the obsorver, and the time best suited for salendar edjustment. Furthermore, if a table for the Boston latitude had been presented, showing the definite sequence of visible and invisible new moons at the time of Tisri new year, different conolusions would have been faideo

The only redeeming feature about Tisri observation consists in the fact that the moon's phasis usually hugs the second day after conjunction, a fact that the Millerites oaught, and one that helped them in their problem. But, on the other hand, the Tisri translation period does not make a eyole performanee, like that of Nisan. At Tisri new year, the moon is always in south declination, the setting angle of the ecliptio is low, the translation periods are shorter than those of MIsan, and the new moon is never so large on the second day after conjunotion in Tisri as in Nisan. ${ }^{x}$ Consequently it is more diffioult to find the moon's phasis, beeause it slips below the horizon so quiokly. ${ }^{x x}$ And when the moon is in perigee, the problem of visibility in the autumn is even more complex.
\times Hevclius. $x \times$ Ferguson.
> thing worth while with the phasis at sunset of 0ot. 12, 1844, 4.56 days off from porigee! This is your own position of the moon at this time, and it is quite different from that of the almama. You say that you have the figures that will prove our computation to be in error. I have been wondering if there may not be error in other figures.

> You see, Brother Washburn, you know a great deal more than I do, and yot, you make mistakes. After all, it is not the mistake that counts; the important feature is that we correct the mistalces. Over three months ago I sent you the revised and remodeled tables pertaining to the Ptolomaic eclipses and Assuan dates, and plainly domosostrated that I was besing no argument upon the tables which you eritiolsed. With regard to the 521 B.C. period, what difference does it make whether there are two ohanges of I Thoth in 7 years instead of the oustomary 8 years? That is, what difference does it make to the Egyptian reckoning? It does not alter the 1 Thoth changes that are involved in any of the specifice periods in hand, and upon the number of these ohanges the reckoning is besed.

> With reference to the beginning of the Egyptian day, the Censorine date, and the beginning of the labonassar era, the argument will have to rest awhile so far as I am concerned. I heve a few pages from Giazel on the Egyptian eivil day and its beginning, which will doubtless interest yous. These I have given Elder Froom to send on to you. Ginze ${ }^{17}$ s argument differs from yours, but it may be helpful. If you have not the references he oites, we an send them one

> You asik me why I did not inelude the 11 Pharmuth date in the table of the Ptolemaio eclipses. This is not an oclipse date .- it is an observation only, and consequently does not appear in Oppolzer's Canon. This I did not discover until I drew up the eclipse table.

Thanking you again for your holpful intorest in our work,

I am yours very sincerely.

January 14, 1941.
220 Park Ave..
Takoma Park, Md.

For purposes of oalendation, the Nisan moon is the one to observe, just as Noses directed. This can be done on any meridian, for the Nisan translation periods form a 62 -year cycle with waves, which keep precise step with the moon's velocity cyole of 62 years. At Nisan new year, the moon is always at her best for observation and is always north of the equator. In the midst of each wave, the translation periods usually go into the third day after conjunction, but in 800 years of calendar observation, the phasis of the Nisan new year was not once found on the day of conjunotion. These facts are of prime importance in laying down a luni-solar calendar, and they forestall the continual trend to advance or retard the sacred new year because a young moon could or could not be seen in Tisri -- a month not prescribed by Mosaic law for calendar adjustment. This is, I believe, an important reason why scholarship has not come to agreement with reference to the crucifixion date. Chrysostom sharply reprimands the Jews for changing Mosaic calendation:
"Among the things to be looked into are the oustoms of the times, and the nature of the laws; and first of all, the perfidy of the Jews, who always stood out boldly against God and Moses, who, exercising an edict of perversity or pride, name the month of September as the new year itself, in which also they appoint magistrates for themselves, whom they call Archons, although they received from God through Moses, the month of March as the beginning of the year." -- Chrysostom, "Opera," vol. ii. ed. Paris, 1687.

The Mosaic calendar, upon which the important Jewish feast period was dependent, was governed by specific rules of observation and calculation. Moses pointed out the very moon to be observed -- Abib; and calendar calculation, as in a case like Pentecost, had to be made from a specific day in Ahib, and not from any other point of time !
with rame,
ConsequentlyरTisri observation has become a substitute for the original Mosaic principle of calendar reckoning.

* Prof. Varhburnis letter is the ©ommettie wits réference to the 1844 Chovology was reecived the finst wabe in Febuesery. She leter was sent if wins. Quodore, who hüred the pagos neforring is Commutté faresenlation over w the elvirnaus, Yer foliones of the for th blewhen strensed ly ey eurn 2-yeare as arifollows:-

1. 2mestion of moonis visiblity at sumst of Oclober iq us Boslons.
2. Because maon eaned not be seen in Boslon ab sunst of O elober 12 , and pasisibly at wo ottur folace in Averice, basbbien miveles is legin the enst bay of the properny at 10 ? 5 Q, we, an Odober 13 in Boshin, a pointy tive which cinnided with sumat of O olober 13 in dermsalem, and muliened the begaming of Oototer in by hamin Eibiudar eivele recbraunig.

Lemralem

The 2300 prophetic days of Dan. $8: 14$
ended, as we rust all agree, on the tenth day of the seventh month in 1844.
An argument is advanced that this tenth day of the seventh month began at sunset, 0ct. 22, in America, and the statement is made,
"The tenth day in Boston was Cot. $21 / 22$,
and in Jorusalem it was Detober 22/23."
A valid argument, which can bear all criticism, can be made for oct. 22/23 in Jeruaalem. Although in Jerusalom Thari 10 was mostly on the calendar date Det. 23, the same period of tine fell mostly on Oet. 22 in dmerica.

When that 10th day began at Jorusalem, at sunsot, the olocks in Boston registored 10:15 A. M. on Oct. 22; in Cinaitunati the time was 9222 , and in Chicago, 9:08 A.M. It 포 thon time to 200 k for the event expected to occur at the end of the 2300 years.

That is reason enough to justify the Adventists' looking for the expected event on Oct. 22. They could not consistently do otherwise. We really need no further argument for the date oct. 22. The argument which is advances can, if published, be used by enemios th belitile and cast diseredit upon our valid argumente.

The 2300-year period began with an event in Palestine, on a day bounded by two sunsets there, not by two sunsets in Anerica. The midst of the 70 th weok, when sacrifice and oblation was made to coases, was a dey which accordingly began with a sunset at Jeruselerr, not a sunset in unknown Boston. Likewise, the end of the 2300 years was necessarily on a day beginning with a sunset at Jerusalem. It could not end before that sunset, or 10:15 A.M. at Boston on Oct. 22.

The quotation at the top of this page makes the prophetic period end in Boston 17 hours and 6 minutes before it did in the land where it began. Keen enomies will not fail to moke use of such statements, and argue that we make the poriod to begin 17 hours earlier in the wilderness of America than it did in Falestine, that we count the decree of Artaxerxes as going into effect in the unknow western continent, where he had no jurisdiction, before it did in the Persian empire itself.

In addition, the astronomical argument in support of this embarrassing conclusion can be shown to be scientifically erroneous. We must carefully exclude all untenable statements which we ean discover.

The argument is made that the Mosaic month Tisri began at sunset at Boston, on october 12. And as i.t is abundantily proved in the Report that the Mosaic months begen at sunset after the now moon becare visible, it was naturally stated that -..

> "In Boston, the new moon of octobor, 1844 , ${ }^{\circ}$. could be viaible on October 12 , right after sunset." (p 47) "The position of the moon was unusual in that her phasis in Boston occurred within $2 ¢$ hours after conjunction." (p 50$)$

It was overlooked that some things previously presented completely rullified these statements.

Inasuuch as sunset at Boston on Oct. 12 was only 22 hours 46 minutes after conjunction, it is statod:
"The conditions 211 conspired for a quick phasis of the new moon
in October, 1844, so that in Boston she could be geen within
24. hours aftor conjunction." (p 47)

This statement was made with the eye upon Fotheringham's mention of just one
cause which produces a tondency toward early phasis, but which has to be accompanied by two others to make the new moon visible in 24 hours. Because that one condition was present (proxiraity to perigee), the conclusion was jumped to that all the conditions were present. The staterents of Hevelius, which had been quoted on pages 35, 36, were forgotten (or hava they not been undesstood?), al though an accompanying statement of his, with the original lating is immediately quoted: "For within a period of nine years these throe requisite causes with difficulty coincide."

Because, upon theory, the month of Misri had to begin at that time, statements were made without inquiring into astronomy to see if they could be true.

The three conditions which must all be present at the same time for a phasis in 24 houra had been given on pages 35, 36:
"The three requisite causes (for a quick phasis), . . commonly very rarely occur, so that the moon is
1)
in the signs of long settings las in Ariesl,
in perigee, and
in the northern border, plainly
in the time of conjunction or phasis."
"If even one is lacking, then on the next day .. this firgt phasis at length appears; but with two requisite causes absont, it can happen that finally the first phasis of the moon may fall in sight on the third day."

It was to these three essential conditions that I called attention in the very first lines of my original comment, as not being met on oct. 12 .

Wile the above, as is shown in succeeding pages, completely nullifios all arguments for a phasis voginning of a month on oct. 12 , it is argued in addition that I Tisri must coincide with Oct. $12 / 13$, because the number of days from 1 Nisan to 1 risri was "invariably" 177 days, with the monthe always having $30,29,30,29,30,29,30$ days. It was not discerned that facts and statements which had been presented in preceding pages contradicted this in three or four places.

A further argument, which in the light of the above muat be faulty, is based upon a rule of the modern, revised Karaite practice, that if the moon's age is over 22 hours, "it can be seon evon simultaneously with the sun on the horizon at sunset on the first evening."

While it is true that the moon can sometines be seen when its age is only 22 hours, it cannot always be then seen, in the latitude of Boston, and in the latitude of Odesse, where the Karaite rule ves published. It is easily demonstrated that this rule would make the moon visible when it vas already below the horizon, at times. For example, the new moon of Sept 27, 1935, would be visible at sunset the next day. At Odessa itself, the moon was $2^{\circ} 55^{\circ}$ below the horizon! To Koraite Jews in Petrograd it was nearly 5° below the horizon. The moon was below the horizon even at Boston, although the moon's age had increased to 29 Hours, 4 minutes. IT Greenwieh, though the age had increased to 24 hours, 18 minutes, the moon was over 3° below the horizon at sunset on Sept. 28.

The rule is only gonerally true, and never so in the fall, in northern latitudes. It is not based upon the original Mosaic rule of a visible moon before the beginning of a month, nor even upon the present Karaite rule that "the first day of the month" begins after "the new moon which is first seen with the naked eye in the west." Present Karaite practice is to be followed only as it accords with the original Mosaic custom.

You have true, authoritative statements in Pert V which nullify every argument which can be presented for a phasis of the moon on Oct. 12, $18 \leqq 4$. other
Likewise, they can be nullified by/scientific evidence, which is not here adduced.

Part V also contains abundant evidence that no Mosaic month can begin before the new moon can be visible, under good weather conditions.

Therefore the seventh month, according to the original Mosaic usage, could not begin on Oct. 12.

Therefore, we need not embarrass the cause of God by publishing an argument which the enemies of His cause will not fail to use, in those days when they will "misrepresent" and give a "false coloring" to even the truth statements we make.

With respect to the visibility of the moon when so near the horizon as in October, 1844, I have not referred to my own experience in my own observetory, nor have I quoted authorities outside your own report. It may be proper, however, to mention that veteran astronomers, heads of observatories, of greater experience in practical observations of the moon and sun at times of conjunction than any other living astronomers in the United States, have recently written me that

> "The crescent moon most certainly could not be seen from Boston under the conditions,"
and that
"

Instead of giving facts and figures, and quoting authorities, I would rather you would form your conclusions from facts which you have already accepted and incorporited in your preliminary Report.

All the quotations which follow are taken from Part V of your Report.

> post manned Fehn,4,41

Digitized by the Center for Adventist Research

Three Conditions must be present
at the same time
for moon to be $\frac{\text { at }}{\text { visible }} 24$ hours after conjunction.
"If even one is lacking, then on the next day . . this first phasis. appears; but with two requisite causes absent, the first phasis of the moon . .
on the third day."
('Page 36)

hong.

 $1 n$-The three requisite causes commonly [together, jointly, coincidently] very rarely appear, so that the moon is

1) in the signs of long settings (as in Aries),
1. The sun and moon must be in the general direction of Longitude 0°, toward Aries or Pisces, "signs of long settings," indicated by the red band. The new moon is in this direction

2. In addition, the moon must be near perigee.
3. At the same time, the moon must be in high northern latitude, about 90° past the ascending node. This point, in October, 1841, was at longitude 336°, indicated by the green band. The moon was far from that requisite position.
(See Details on the following diagrams)

The quotations are in Part V of the Report, and are from Hezelius, "Selenographia," pp 274-276.
H. A. ..ashburn.

The First of the Three Conditions which must be present, all at the same time, for the moon to be visible in 24 hours after conjunction.

The new moon must be in the right longitude, which is ONLY IN THE SPRING.
"Fotheringham names three causes as affecting the first appearance of the (f p-35)
new moon: (1) Longitude; (2) Latitude; (3) Anomaly."
Hevelius: "The three requisite causes Xor a quick phasis, as now told, commonly very rarely appear, so that the moon is
in perigee, and
3) in the northern border, plainly
in the time of conjunction or phasis."
"He names Pisces, Aries, and Taurus as being signs of long settings, and Virgo, Libra, and Scorpio as signs of short settings."
((The moon was in Libra at conjunction, Oct. 11, 1844.
and in Scorpio at sunset, October 12.)) and in Scorpio at sunset, October 12.))
"The ecliptic sets slowest in Aries, and fastest in Libra." (36)

In illustration of above facts, I copy Diagram D, page 46a:

When the sun and new moon are in Aries, which is March-April, the ecliptic at sunset has a high inclination to the horizon.

When they are in Libra, which is Sept-Oct, the ecliptic has a low inclination to the horizon.

In the first case, the moon is much higher above the horizon in 24 hours after conjunction and is longer in setting.

In the second case, the moon is less than $1 / 3$ as high, for the same distance from the sun, and too 70 w to be visible in 24 hours.

"The three requisite causes . . Yor a phasis in 24 hours ${ }^{\text {l }}$
(p.36) $\frac{\text { the }}{\text { in pirns }}$ perigee, of and $\frac{10 n}{\text { ond }}$ settiness,
in the northern border, plainly
in the time of conjunction or phasis."

TWO of the essential concomitant conditions were totally lacking.
"If oven one is lacking, then on the next day . . this first phasis . . appears; but with two requisite causes absent, . . the first phasis of the moon . . on the third day."

The Third Essential Condition
which must be present
for the moon to be visible in 24 hours after conjunction.

LATITUDE.

"Conjunction . . near the northern part of the zodiac." (pare 36)
"The three requisite causes ..
so that the moon is

1) in the signs of long settings,
2) in perigee, and
3) in the northern border $\frac{\text { in of the zodiac plainly }}{\text { the time of conjunction or phasis." }}$

The moon is in the northern border of the zodiac when it has moved 90° its ascending node, Ω, and is then about 5° north of the ecliptic. At 90°
past the descending node, g, , the latitude of the moon is about 5° south.

The large effect of latitude upon the visibility of the new moon, especially in the fall, is shown by the following diagram, copied from Section $F, p 46 a$, with the zodiac added, 5° on each side of the ecliptic. Two positions are marked, 35° and 15° from the intersection of the ecliptic with the horizon.

DIAGRAM D.
At the autumn equinox:
If 35° from horizon intersection,
in the N. border, the moon would be 15.1° high, in the S . border, only 5.5^{0} high.

If 15° from the intersection,
in the \mathbb{N}. border it would be $9 \frac{3}{2} 0$ high, in the S. border, down to the horizon.

Ecliptic in Autumn

The new moon is never as far from the intersection
 at sunset as 15° in 24 hours after conjunction. It cannot be much more than 15° Conjunction from the sun itself, which at sunset is 50^{\prime} below the horizon, its upper limb touching the horizon, by reason of refraction.

e
Get. $2,18 \times 4$

The varying latitude of the moon in the fall of 1844 is represented 4. by the following curve. The circles indicate the moon's position in latitude at the times of conjunction and alleged phasis.

The Latitude of the moon as given in the Berliner Astronom. Jahrbuch, the official German ephemeris was as follows (Berlin Mean Time):

$$
\text { October 11d } \begin{array}{cccccc}
12 h & 3^{0} & 46^{\prime} & 32.5^{\prime \prime} & \text { South Lat. } \\
12 & 0 & 3 & 17 & 51 & " \\
12 & 12 & 2 & 45 & 40.1 & " \\
13 & 0 & 2 & 10 & 34 & "
\end{array}
$$

Time of conjunction, 11 d 12h 17.4 m --- Latitude, $3^{\circ} 45^{\circ} 52^{\prime \prime}$ South Lat. At moonset, Boston, October 12, -- 24752 South Lat.
The longitude of the ascending node was 246°, and the point of highest northern latitude was at longitude 336°. The moon was far from that point, at longitude $198^{\circ} 34^{\prime} 48^{\prime \prime}$

Three conditions must be present
at the same time
for the moon to be visible in 24 hours after conjunction.

> "The three requisite causes
> The moon was NOT
> "in the northern border plainly" at either conjunction or alleged phasis.

TWO of the essential concomitant conditions
were totally lacking.
(All quotations are from Part V, Section E, p 36,

There could be no phasis to mark a beginning of Tissi at Boston on Oct. 12, 1844.
moon in the sign's of long settings,
8. in perigee, and
in the northern border plainly
in the time of conjunction or phasis.

$$
\text { (page } 36 \text {) }
$$

The varying latitude of
the moon in
the fall of

Latitude at conjunction, got. 11, was $3^{0} 45^{\prime} 52^{\prime \prime}$ sputh
At moonset, $0 c \% \cdot 12$, Boston, $\quad 2^{0} 47$, $52^{\prime \prime}$

TH H

1844.

X September
"Conjunction . . near the northern part of the zodiac." (Id.)

Diagram D, page $46 a$,
with zodiac added.

The large effect of the moon's latitude upon visibility, especially in the fall.

Ecliptic in Autumn.
Sun (and new moon) in "signs of short settingsos" "Virgo, Libra,
\qquad

can never occur. in the fall, on account
of the low inclination
of the ecliptic

$$
\text { vet. } 12,1844 \text {. }
$$

The moon was neither "in the signs of long settings,"
nor "in the northern border."

C OPY
Answer to personal
letter to G. Amadon

February 9, 1941

Elder H. A. Washburn, St. Helena, California.

Dear Elder Washburn:
There are at least four points in your recent letters that have vital relation to the features of chronology upon which the Comittee has been working for the past year:

1. The Aramaio dates concerning which now you have "different conclusions" from those first submitted to me.
2. The beginning and ending of the 2300 -year prophecy.
3. Rule of correspondence between the Aramaic and Egyptian day.
4. Critioism of Part V with reference to the Tisri "phasis," and the rules pertaining to a short translation period.
5. The Aramaic dates are a check on 5th century calendation among the Jews. When you wrote me that you could show that there could not be a plus-one coincidence between the double dates of the papyri, I was at once interested. But when you proposed a passover on the civil date of full moon, or even before, your argument, whatever it was, lost face. In order to make clear that such a feature in Jewish reckoning would distort the relation between passover and the moon's first appearance, I am enclosing a photostat of Sprengling's series of 30 Nisan dates, which are worked on this very basis. He built up his table upon some previous work of Shurer's, and his passover dates, as you may observe, frequently makes the moon's phasis come before conjunction! This, you must know, is an impossible arrangement.

The position of the passover, as of 14 Nisan , is vital to primitive luni-solar time, and it is essential that we all agree on this point, if possible. Student theses, that have been coming to us in the past two years, have slipped on this important issue. Almost no one -- including chronologers and astronomers -- seems to know where to place 14 Nisan with reference to the full moon. And when, not so long ago, you offered a different interpretation of the Aristobulus citation than has been explained by Anatolius, Lilius, Nancel, Petavius, Eusebius and others, I felt as if our correspondence was not bearing fruit, for it certainly is clear that this excerpt refers to the full moon -- not to the new moon, as you insist. In your letter of the 3rd instamt, just received, you have spent a lot of time and good energy in criticising the use of the words "phasis" and "visibility" in Part V, a first presentation which is now over two years old. But if you are not olear on the relation of the paschal full moon to the passover itself, and do not agree with us -- I mean the Committee -- on this point, then our first effort should be, if possible, to get together. For this point is vital.

Another feature of the Aramaic dates that is important to prophetic reckoning and its correlation with Jewish time is the fact that the late-Tisri and after-Tisri dates produce the same relation to the Egyptian calendar as
those dated before Tisri. If a variation on the lst of Tisri ocourred in any of those 5 th oentury years, so that, as you claim, Elul sometimes had 30 days, this calendar event would at once change the rule of correspondence between the Aramaic and Egyptian time. However, with the exception of Papyrus "K," we get a constant relation between the double dates of the perfect, or unmutilated, Assuan texts, and this fact significantly favors the passover computation used. With regard to Papyrus " K," inasmuoh as the passover full moon of that year was April 11.68 (J.C.T.) -- nearly after sunset -- and the new moon was near apogee, and in south latitude, it is probably that April 13 was taken as the passover day. This would place the Ist day of Nisan on March 31, the same as in the previous 19-year oycle, in year 430 B.C. By this correotion, Papyrus " K " also gets a constant difference.

We have more material on early computation among the Jews, but it is not ready yet for oriticism. After you have thought it through, we shall be interested to know if you are in agreement over the position of the passover.
2. With reference to the second point, the Committee has already given much thought and discussion. However, please allow me to speak for myself:

The 2300-year prophecy relates directly to the atonement, which, during $486 \mathrm{l} / 2$ years, or thereabouts, was performed in an earthly temple; but during the major portion of this prophetic period -- 1813 years and over -this atonement service was enacted in the heavenly sanctuary. At the end, a change was to come, but that change was in heaven, not in Jerusalem, nor on any other earthly meridian. As an accompaniment to this event, the worldwide first angel"s message was foretold, which was to go to every "nation, and kindred, and tongue, and people." It was to compass sea and earth (Rev. 10:2), embracing every meridian. But it had to start somewhere. It did not start at Jerusalem, among Mohammedan antagonists to vicarious atonement. Fanatioism out short a movement in Europe. But America responded to the prophecy, and here the message of fulfillment to Daniel 8:14 was staged. Consequently, to the meridians of America the prophecy had to be immediately reiated. Luni-solar time had to be established on the ground where the message was preached.

In the mid-summer of 1844, such men as Bates, Snow, and the devout adventists of the Exeter meeting accepted the reckoning which pointed to 0ctober 22 as the l0th day of the Jewish seventh month, and as the last day of the 2300 -year prophecy. How did they compute this date? From the Nisan phasis. Bates was both navigator and astronomer. Although he was not first in presenting this time message, yet, as an expert on moon reckoning, he could pass on Snow's problem in luni-solar time. He accepted April 19, 1844, as 1 Nisan ("Way Marks and High Heaps," p. 30), although he does not give his reasons. But astronomy gives the reasons, and shows (1) that the moon could not be seen in Boston the first sunset after conjunction, as of approximate noon, April 17, because the intervening time was altogether too short; and (2) that the moon could be seen the second sunset after the change, on April 18, because she was above the horizon for nearly $11 / 2$ hours after the sun set in Boston. Plainly then, the sunset beginning of April 19 in lunisolar time was the first day of Nisan. In this manner, on the very ground, where the second angel's message was being preached, the Nisan new year was established by simple rules and reasons that any school boy could understand. And that date, April 19, as 1 Nisan, cannot be moved forward or backward. Not backward, else the new moon could not be seen, and not forward, for the previous year was already 384 days long, and luni-solar time does not
provide any longer year except by the use of postponements, which all chronologers agree were not employed in primitive calendation. My conclusion is, therefore, why complicate this simple calculation with a Jerusalem hypothesis that could only result in an argument?

To April 19, the Millerites added six 1 unar months and got October 13. You question the right to do this. But your Talmudic quotation is not proof of your claim. The irregularities that crept into Jewish reckoning came after the destruction of Jerusalem, and during the persecution of the Jews under Victor. They were then living in caves and desolate places, and were not allowed to announce their feast dates. They went through iron and fire. This continued through the time of Constantine and on. Antagonism between Passover and Easter resulted in wrong dating for both Christians and Jews. You can read it all in Graetz' History of the Jews, Sidersky's "Chronologie juive," which I sent you, Hastings' Encyclopedia of Religion and Ethics, art. "Jewish Calendar," etc. Other references you will find in Part V.

The Millerites got their reason from the Bible for adding six lunar months to April 19 to get the first day of Tisri. They argued from Daniel 9 that if the sacrifices were out off in the midst of the "week," or middle of a prophetic year, which was in the spring, then the end of the week, and hence the end of the prophetic year, and also of the whole prophecy, would come six moons later in the autumn.

This Millerite chronology as given here, is all written in Elder Froom's Syllabus, concerning which you wrote your special appreciation. Also in recent letters different features of the argument have been repeated as we have now come to tell the story, after more than two years of further study. Perhaps it has not registered with you, and hence this repetition. At the time Part V was written, we were not as well acquainted with the 1844 literature as now. I first thought that the Tisri date was the one primarily computed by the Millerites. Since the presentation, the members of the Committee have studied in detail the Millerits periodicals. We have made photostats of every page giving chronological statements, and classified all the references, making charts to demonstrate the progress of the "seventh month movement." You say, why did you not do this before writing the report? A series of circumstances not necessary to explain is the answer. I came here for five weeks! Now, for ovar two years, a group of us have been at work on this research, trying to eliminate every objectionable feature. We appreciate your painstakitic ing oritioism, but it does not point out error in the ohronological argument as now told and stressed, and which has been fully outlined in recent correspondence with you. The question of the moon's visibility in Tisri on the Boston meridian in 1844, the Committee disposed of over a year ago.

But to return to Point 2 and the 177 days. I have just finished graphs of the moon's velocity for the Nisan and Tisri translation periods from the year 1767 to 1941 -- all the years, in faot, for which we have available almanac figures. These velocity graphs run in 62 -year cyoles, the same as the Nisan translation period on any meridian. If the moon on 1 Tisri had a delayed phasis of a day, the graph in that year would be distorted and irregular. But in Tisri we get just as smooth a ourve as in Nisan. Furthermore, it is helpful to know that the interval in days between the Nisan conjunotion and the Tisri conjunotion runs in a 9 -year oycle that consists of four successive years of 177 days each (and their fractions), and then of five successive years of 176 days each (and their fractions) -- nine in each series. The Tisri new year, therefore, seems to be well under control of the moon's motion.

The Bible appears to confirm regularity with respect to the important first days of each month. Read Jeremiah 33:20. The Lord Himself is speaking, and He challenges Israel to break His covenant with day and night that they should not occur in their season. What season? The Sabbath, for one thing, perhaps -- a solar event. But there are "seasons" over which the moon was appointed (Ps. 104:19). These cannot but refer to the moon's lunations, the only seasonal periods the moon affects. The challenge is, both from God and man, can the moon's seasons be disarranged so that the new moons and new moon days do not come in their season? The answer has to be "No," for they are as sure as the Davidic covenant. That is pretty sure, Elder Washburn! This is one of my "strong reasons" for concluding that 177 days can be added to 1 Nisan to get 1 Tisri.
3. As to Point 3, I am enclosing a translation from Ginzel on the "morning" beginning of the Egyptian day. We are not ready to discuss yet the civil day of the Egyptians, but if we use the Assuan papyri as sources, this will have to be thought through. As to the 11 Pharmuthi "observation," I first took it to be an eclipse because Oppolzer had an eclipse dated so near the year of Alexander mentioned by Ptolemy. But I think that this is wrong. Guinness lists 19 lunar eclipses only. I found one solar eclipse, and that would make the twenty often oited.
4. I have read over carefully page 47 of Part V. Our Cormittee is in full agreement that the Tisri new moon could not be seen in Boston in 1844, but only in the West and South. And there were many Millerites in these parts. I am enclosing a little table of new moons and their moonsets, together with the corresponding sunsets that demonstrates this fact. I made this outline chart over a year ago for committee presentation, but have not had opportunity to present it as yet. Elder Froom thought it too technical. However, not only was it impossible to actually see the moon's phasis in the ten minutes she was on the Boston horizon after sunset of October 12 , but at 10° further north, she even set before the sun! Wherever the word "phasis" is used in Part V, the word "crescent" would be less misunderstood. The paragraph to whioh you object was carefully discussed by Elder Froom and myself with the head of the Almanac Office at the Naval Observatory. The expression "the conditions all conspired" were Mr. Draper's own words, and they refer to the conditions mentioned in the previous sentence: (1) The fast moon, as described in the preoeding paragraph; (2) her perigee position; and (3) the early evening conjunction. I wanted to mention also the low angle of the setting eciiptic, for this factor was stressed in the Millerite papers, but the Committee deleted further technicalities. However, this expression has no reference to the rules of Hevelius, except the one statement that it is rare for all requisites favorable to visibility to coincide. His rules are different from Fotheringham ${ }^{\text {s }}$, with the exception of the perigee and apogee influence. At the time of the Nisan new year, the moon is always north of the equator, and the setting sign makes a large angle with the horizon. On the contrary, at the time of the Tisri new year, the moon is south of the equator, and the setting angle of the ecliptic is low. Consequently, perigee or apogee becomes a principal Hevelius variant for causing a long or short translation. For this reason, Part V stressed perigee as the chief cause of the short translation in 1844 Tisri new year, and it was likewise emphasized in Millerite articles. However, there are other causes.

I am passing over your letter and enclosures to the chairman. Thank you for your interest. I hope that we can come to ultimate agreement with
> 1. Passover calendation,
> 2. Aramaic papyri,
> 3. Egyptian civil day.

Yours very sincerely,
Grace E. Amadon.
POSTSCRIPT -- I have missed out some details. There would be no objection to a line of coincidence around the world, to mark the sunset beginning of the lst day of Tisri in Jerusalem, providing it is remembered that every point of time on such a line belong to some specific day on each meridian, and not in partioular to the day in Jerusalem, such as the modern Jews observe with reference to the Sabbath. However, the First Angel's Message emphasizes that the judgment would be marked by a certain "hour," and inasmuch as we do not know the exact instant when the 2300 days began, why should so much emphasis be called for with reference to a point of time in Jerusalem?

Have reread your last letter. will summarize the problem as it appears to me:

PROBLEM: When, where, and on what basis could luni-solar oalendation be established in 1844?

Argument --
(1) If Ootober 12 sunset on the Boston meridian be selected for observation, then you do not allow Tisri new year to begin that evening because the new moon could not be seen in Boston. Same rule would also fit Greenwich, Jerusalem, and Leningrad, extremes of latitude in the east; but in the west, and on the Gulf of Mexico, a longer translation period allowed the moon to be seen at sunset of October 12. What latitude do you think should govern the calendar? What meridian and what moon?
(2) If April 18 sunset on the Jerusalem meridian be selected, then it is allowed by some that the Nisan new year can begin, because it is reported that the new moon can certainly be seen in the "piercingly clear" atmosphere of Jerusalem, when on the horizon for an hour after sunset -- 54 minutes in this instance. But if this date be taken for the Nisan new year in Jerusalem, then each phasis for Sivan, Ab, and Tisri would have had to occur on the very day of conjunction -- an impossibility because the translation periods belonging to those months would have been altogether too short. Hence April 19 sunset has to be taken for the beginning of the Nisan new year in Jerusalem, whose civil date would be April 19/20.
(3) But in Boston, on April 18 sunset, the moon surely could be seen, because on the horizon 86 minutes after the sun went down; and at the end of $30^{h} 49^{\mathrm{m}}$, which had elapsed since conjunction, the moon had moved at least 15 degrees east of the sun. On this date she was 19 degrees north of the celestial equator, and 2 or 3 degrees north of the sun. Therefore, the moon could eas ily be seen on the Boston meridian at sunset of April 18, 1844. But if the Tisri new year is not allowed to begin at October 12 sunset, because the moon could not then be seen in Boston, then more than 177 days lapsed between Nisan and Tisri new years in Amerioa, while in Jerusalem, the interval between April 19 sunset and October 13 sunset -- both dates imperative because of the position
of the Sivan, Ab , and Tisri phasis -- was exactly 177 days. But Ni-san-Tisri interval should be identical on all meridians.

This paradox demonstrates that luni-solar time cannot be regulated by the moon's visibility alone, especially in the extremes of latitude in the fall of the year. On the contrary, the spring moon anywhere oan be used as a guide to calendation, although it has to harmonize with the other summer months. The error in the foregoing argument (1, 2, and 3) consists in the place and time of observation, when the Tisri new moon is frequently not seen at all, especially when the moon is in south declination, as was the case on Ootober 12, 1844. The moon was far south of the equator on this date, and the observer far north! of course the moon could not be seen under these extreme conditions. Nevertheless, the calendar had to advance a day, because of the demands of the Nisan new year both in America and Jerusalem. Your argument from the Hevelius rules entirely omits the position of the observer, and the time best suited for oalendar adjustment. Furthermore, if a table for the Boston latitude had been presented, showing the definite sequence of visible and invisible new moons at the time of the Tisri new year, different conclusions would have been drawn.

A significant redeeming feature about Tisri observation consists in the fact that the moon's phasis usually hugs the second day after conjunction, a fact that the Millerites caught, and one that helped them in their problem. But on the other hand, the Tisri translation period does not make a oyele performance, like the Nisan. At Tisri new year, the moon is always in south declination, the setting angle of the ecliptic is low, the translation periods are comparatively shorter than those of Nisan, and the Tisri new moon is never so large on the second day after conjunotion as the Nisan. Consequently, it is more difficult to find the moon's phasis in Tisri, beoause it slips below the horizon so quickly. And when the moon is in perigee, the problem of visibility in the autumn is even more complex.

For purposes of calendation, the Nisan moon is the one to observe, just as Moses directed. This can be done on any meridian, for the Nisan transm lation periods form a 62 -year oycle with waves, which keep precise step with the moon's velocity oyole of 62 years. At Nisan new year, the moon is always at her best for observation for she is always north of the equator. In the midst of each wave, the translation periods usually go to the third day after conjunction, but in 800 years of calendar observation, the phasis of the Nisan new year was not once found on the day of conjunction. These facts are of prime importance in laying down a luni-solar calendar, and they forestall the continual trend to advance or retard the sacred new year, because a young moon could or could not be seen in Tisri somewhere, or in other months not prescribed by the Mosaic law for oalendar adjustment. This is, I believe, an important reason why scholarship has not come to agreement with reference to the orucifixion date. Any young moon, on any meridian, has been to.ken to regulate the calendar.

Consequently, Tisri observation, that seems to have become a substitute for the original Mosaic principle, is unreliable, if not checked with the Nisan moon, and all the other moons of the Jewish feast period.
G.A.

Elder H. Mashburn, St. Holena, Calif.
Dear E1der Mashburn:
Your recent letter to Blder Froom has been read and considered. I was disappointed that you did not dofinitely discuss the three points mentioned in my last letter. The 1500 perturbations of the moon are taken care of -- that is, within half an how we- in our standard tables, such as Sohram, Ginzel, or Neugebauer. The Hloon date in 411 B.C.0, which you oriticise, vas Friday, Apr. 11.68 , about $4: 30$ pome, earlier or later. Inssmuch as the Jews demanded from Caesar that 3:00 polle be the dead line on the proparation days (Josephus, bIF. XVI, oho VII, see. 2), and for the reason that the translation oyole trend demands laroh 31, it seems reasonable to accept the latter date for 1 Nisan. We have worked through the 62 -year oyele for over 800 years, and there are certain preeise trends to the translation vaves, which surely have some bearing on the problem.

Hovevor, as matters now stand between us, you have not made elear how you compute Jowish time, not only in early centuries, but in a contury Iike the 19th, where an early reconstruction of early Jewish time has to be nade. In your 1939 eriticism (oitations enclosed), you place the passover on the day of full moon in Jerusalom. In your recent argument for 1844, you place the passover on the day aftor the day of full moon in Jerusalem, making 14 Misan coinoide with May 3. You have to do this in order to have the Tisri new moon phasis occur at sunset of October 23 , a point of time which you seem to acoopt. You give no sourees at all, excopt the one Talmud oftation, which the Jewish ohronologers themselves have tried strenuously to explain and abolish. See Sohurror, "Jewish Calondar."

Inclosed is Chart J and its foundation figures domonstrating the passover reakoning for Jerusalem in 1844. The sources for this computation you will find in the "Wednesday GrueLifixion," whioh was sent you some time ago. The passover argument passed our Comittoe early in 1939, and it stil1 holds. The translation cyole is the same as ves worked out then. It shows that in the Holy Iand the Misan moon alvays fulled on the 13th of the Jevm ish month. This can be shown for centuries both BoC. and A.D.

But, now here comes the crux of the ergunent -- how shall the peschal date as appiled to Jerusalem, and all the resultant-feast dates, be carried from meridian to meridian, as has to be done in 1844 if the problem starts at Jerusalem? You insist on following the sun's peth, dropping out the moon's office for 0.11 meridians except Jerusalem, and the sunset beginning of the day of atonement for the rest of the world. Certainly, neither the Bible nor astronomy supports an arrangement of the luni-solar oalendar that permsts the moon to point out her new year in Jerusalam only. On this, Eeolosiasticus 44:6,7s
> "He made the moon also to serve in her season for a declaration of times and a sign of the world." [Italies mine.]
> "Prom the moon is the sign of feasts, "ete.

If it is reasomable for the inhabitants of earth to demand a solar meridian (or seotor) in order to keop the elocks correet in countries east and west, then it is also equally imperative that the moon's new year - a day designated by the moon only, and not by the sum - - should have a starting meridian. The 2844 ohronology dofinitely demonstrates that such a meridian is movable, in contrast to the solar dato line, which is fixed. This movable lunar meridian provides the exact time required by the prophotie dates. In lieu of it, a l9-year eycle noon has to be employed (as in the Catholie ohureh ealendar and the rabbinioal reokoning), and this fictitious moon is alvays from two to three days off from the true estronomioal moon.

Conseauently, neither the Churoh calendars, nor the modern Jewish, can point out the orucifixion date or any other prophetic dates.

I won't disouss surther the lunar meridian now. Bnelosed is a little diagram showing how the foast day can be trailed around the circle of the earth. I am sure that you will find your observatory friends clear on this point. Astronomers welcomed the Besselian year, which is based upon a movable meridian, and. if preoision is demanded, the same thing has to be featured in luni-solaytime. Such a meridian is based upon the moon's translation periods and the length of the lunar year. By these moans, any Jewish new year date can be traeed on the earth's circle as the earth revolves. By following the ecliptio only, you wander far from the Bible demand that the day of atonement begin on the evening of the ninth of Tisri. not at 11 a.m. on the morning of the tenth on the 7oth meridian, nor at 5 a am. in Honolulu! Wo do not take the seventh-day Sabbath with us, when we travel, do we? He keep it where we find it. Just $s 0$ with the Jewish Of importance to tho problem is to learn whether you at this time are in harmony with the passover reckoning. From your oritioism in 1939, I would understand that you wore then following the rabbinioal oomputation, in plooing 14 Nisan on or before full moon. This of course leads to distorted translation periods. Elder Froom will doubtless further explain to you the question raised over two years ago with reference to short translation periods. Immodiately after the presentation of the report, it was demonstrated in the Committee that the Tisri new moon could not be seen in Boston. When your first draft on this point oame, we knew that you wore wrong, for we had already diegramed the perigee moon on the evening of October 12. However, it is no matter, seeing that we all agree on this point now. I think that you are oorrect in your argument that the Tisri moon could not be seen elsewhore in America in 1844 .

Please not ${ }^{\circ}$ my oriticism of your "Kisleu proof" of the first year of Artazerzes. You apparently hrve just ove rule for the phasis -- the nosct day after conjunotion. This certainiy does not agree with the anolents, nor with Scaliger, Hovelius and Fotheringham, all of whom reeognize the "one to four days for the moon's translation. If you will look on the Assuan papyri chart, it can be observed that the years 465 and 464 B.C. come at the peak of the translation wave. Honoe their translation periods must be longer than one day only. Your Maroh 25 for 1 Misan eannot hold, for it would bring the new year before the equinox in 465 , whioh was then Maroh 26 m 27 . If the spring in 465 was not ombolismic, then 1 11isan vas on Maroh 27, and to the suoceeding 1 Nisan on April 15, we should have 384 days. Kisleu would then be dated Nov. 18 to Dee 17, inelusive. But if we follow the computation of Papyrus "B," then I Misan in the spring of 465 was on Apri.1 25, and to the succeeding April 15 we have 355 days, making both Hesvan and Kisleu 30 days each. Kislou thon equals Dec. 18 to Jan 16. Hence the "Tisleu proop ${ }^{\prime \prime}$ does not pan out. Furthermore, a Maroh 25 for 1 Nisan would make the year 386 days lorg from 465 to 464 , and only 353 days long from 466 to 465.

I also enclose ohart C on the orucifixion date. I would appreaiate a personal roply for your criticism, and include postage for the return of the oharts. Am sorry that they can be loaned only. Please return them before the season is over.

Thanking you again for your interest,
I am yours very sincerely,
\leqq Crescent Place, Takoma Park, Md. May 8, 1942.

1. "A faulty argument based upon Neh. 1:1; 2:1; Ezra 7:7-9. These scriptures merely prove that in the years of the reign of Artaxerxes alone there was no break in the count of the year between the first day of the month and /first some unknown day in the month Kislev, that when he came to the throne the date was somewhere between the first day of Chisleu and the first day of Nisan, the first month. And this is the meaning our people have always held.
2. "Our publications, such as those of Elder Spicer, make very clear, with diagrams, otc, that Artaxerxes began to reign somewhere between the first of Nisan the last of Chisleug and The Canon of Ptolemy shows that he began to reign at some i Spicer, "Certaindate between Dec. 17, 465 B.C. and Dec. 17, 464 B.C. If histiss of advent reign began between Dec. 17 and Jan. 1, then he began to reign in 465 B.C. To establish that his reign began be tween Jan. 1 and Dec. 17, or in 464 B.C., is our problem. In other words, we must prove that he did not come to the THovernent." 8 . 140: "some where
velureen Angnat and the last of loverthrone between Dec. 17 and Jan. 1.
3. "The month, Chisleu, sometimes reaches beyond Dec. 17. Did it in 465 B.C.? If it can be proven that in 465 B.C. the month, Chis leu, did not reach to Dec. 17, the last gap is closed in defense of the date 457 B.C.
4. "There were solar eclipses, marking times of astronomical new moons in $465 \mathrm{~B} . \mathrm{C}$. on June 20, 7:16, a me, Greenwich Civil Time Nov. $15,10: 19$, pom. Oppolzer, Canon Dec.14, 10:40, pam., der Finsternisse, p. 72.

Topym " B "s say vimen

Sue below.
The visible new moon following the last eclipse marked the beginning of the month Tebet, and the month, Chisleu, was entirely in the past."
The papyri prove that the system of counting Chisleu before Nisan does
not apply to Artaxerxes' reign alone, but is a general custom applying to any king's reign. In the 21st year of Xerxes, Papyrus "B" states that the 18th of Chisleu synchronizes with the 17 th of Thoth in the list year of Artaxerxes, and as proven by the computation, this was Jan. 2, 464 B.C. As the synchronism is exact, it proves Brother Washburn's contention faulty all the way through. (Dr. Wood)

465-464 B.C., if embolismic (384 days), then 1 Nisan $=$ Mar. 27
465 (Mar. 27 to Apr. 15) 464
Therefore Kislev (30 days) $=$ Nov. 18 to Dec. 17 inclusive.
Note: I Nisan could not equal Mar. 25, as Bro. Washburn computes, for it would not only make the year 386 days long, but it would bring the Nisan new year before the equinox, which, at that time, was March 26 or 27.

465-464 B.C., if common, then year $=355$ days (Apr. 25 to Apr . 15)
Papyrus "B" calls for Apr. 25 as 1 Nisan in spring of 465.
Then Both Hesvan and Kisleu $=30$ days each, and Kislev $=$ Deco. 18 to Jan. 16.
Consequently, "Kislev proof" does not pan out. We mut therefore look for
another argument for is of artaxerxes. G. Amado.

$$
\begin{aligned}
& \text { Elder LoE. Froom, } \\
& \text { Sanitarium, } \\
& \text { Loma IAnda, Calif. } \\
& \text { Dear Elder Frooms }
\end{aligned}
$$

The enclosed tables and oftations represent an attempt to outline some of the Mashburn digressions, and to give an answer to thom. IB main oritioism of Dr. Hood's ohronology seems to fall dova. I cannot understand why these oritiolsms have not been ironed out in the Comnittoe -- why Dr. Wood does not seem sufficiently interested to press his defence. After all, it is not his argument, it is the defence of a primary prophetie date.

One of Elder Washburn's main diffioulties is the faot that he thus far has had no proved method for Jewlsh reekoning in the early oentruiles. Therefore his chronological argument flounders around, interspersed with logarithms, sines and $00-s i n e s$, which do not mean a thing to the aoademic thinker. In faot, the trigomotrical formulas cover up his mistakes, and tend to give oredence to false reasoning. For thls reason, as you will soe by examining the material enolosed, one more attempt is here made to try to get Washburn to oonsent to the validity of the passover oaloulation. His letter and tables like these onclozed to you, have already been sent on to him, and when you see him, he should have had time to argue them through. He himself is always hard on the other fellow, but when the tables are turnod, he does not like the feeling. As the situation now stands, for over two years his oritioism of Wood's Part IV has held up the presontation of the 457 date in public. I believe, that so far as the 5th oentury BoC. dates are oonoerned (I do not lonow anything about the Hrodus dates) Whahburn's oritioism is falso alarm.

The Aramaie papyri plainly show that the Jewish count of the regnal years lagged behind the Persian oount, winich, in turin, lags /of behind Ptolemy's Canon. Hence the Jewish accession year of the kinga, Judah, which the Bible soems to endorse, and the accession year which tablet and stone offer for Babylonian reckoning, are all to the good, and even up the gaps in these various forms of computation. WH thout the acoession yeas, Nebuohadneszar's reign would fell two yoars short ef that a? Ivil-Mercdaoh (Jer. 52:31).

Am working on the revision of Part V. Rrying to make it simple. Fnclosed is anothor historioal oheok on the passover reckoning. 耳eve worked out the datos in Irekiel. All but two ooeur on the Sabbath day, that is, the vislons. So R. Driver endorses the same ohronology for Ezelelel as presented in Part IV. Of course, it is as reasonable for Ezeldel's prophoey to have beon given on the Sabbatin daydvering a porlod of about 25 yea.s, a3 for the Revelatlon to have been given on one Sabbath only. I hoped to Pind a synohronism in Ezelciel, but did not find it.

Hope that you are better, and that the whole party has had a pleasant trip. If you have time to vrite, please let me know if you have changed Elder Washburn's mind.

Tours very sincerely,
May 13, 1941.
Takoma Parz, Ma 。
4 Crescent Place.

Dear Brethren of the Conmittee, -
After some incapacitation by reason of ill health I continue my communioation to you, relative to some statements in Part V of your Report which call for change in order to bear close examination.

Since sending that comunication, I have received, for the first time, an acknowledgment of the error as to the visibility of the moon on oet. 12, 1844, at Boston. But the error I was pointing out is really not abandonod in this last letter, for the argumentifor the beginning of the 7 th month at sunset on October 12 remains the same, with this difference, that instead of a visible moon at Boston, it was visible "in the mid-Neat and in the South."

Bresumably, it is thought that the moon was visible "in the mid-West" because the time of its setting there was an hour after the moon had set at Boston. But they forget that sunset there was also an hour after the sunset at Boston, so that the altitude of the moon above the horison was little different than it was at Boston.

This new position is untenable for precisely the same reasons as the former was.
The statements on the diagrams which I sent you can stand just as they are, substituting the word Chicago for the word Boston.

The statements of Hevelius, quoted in your Report, as to the three conditions which must be present for the earliest phasis of the moon, are accurate and exact. He does not contradict Fotheringham, as has since beon intimated, for according to page 35 of your Report, Fotheringham names the same "three causes", as do all astron6mers.

In Chicago, as in Boston, the saason was not spring, but fall, and the moon was still in south latitude, and not "in the northern border." The "three sequisite causes" for a phasis in 24 hours were as much lacking in Chicago as in Boston.

I enclose the mathematical computation by spherical trigonometry, which shows that the altitude of the moon at sunset at Chicago on 0ot. 12,1844 , was only $1{ }^{\circ} \mathrm{g}$, above the horizon, far below the limits of visibility.

Abundant evidence in the publications of astronomers show that the moon at this low altitude at sunset is absolutely invisible. I have statements written me by the most eminent American astronomers to this effect, and al so from on astronomer of the U. S. Naval Observatory who has been connected with the Nautical Almanac Office for much more than twice as long as Mr. Draper.

> (Mathomatical computation on next sheet)

Diagram C in Part V of your Report, p 3le, but evidently intended to follow g 34 , has a symbol at the bottom which I have seen affixed to copyrighted representations, which indicates, I suppose, that this diaggam has been copyrighted by the General Conference Corporation of Seventh-day Adventists. As there would be no purpose in copyrighting this diagram if it were not intended for publication in the name of the denomination, I wish to call to your attention serious reason why this should not be done.

The "Translation Cycle," taken with its accompanying statements, does not represent scientific accuracy, but seripus error. This is the more serious from the emphatic statements in Part VI, pp 4,5, regarding the "sciontific accuracy" of the astronomical argument, "profound and sciontific," from the logie of which there is "no escape", which "tests of scientific investigation only substantiate and fortify," because of "adherence to the known lawe of astronomy," etc.

Not only will antagonistic scholership "severely eriticise" every position of truth

Altitude of the Hoon
at Chicago, Illses at sunset on Oct. 22, 1844.
Latitude, (Yerkes Observatory) $42^{\circ} 34^{\circ} 12^{\prime \prime} \quad$ Co-latitude, $47^{\circ} 25^{\circ} 48^{\prime \prime}$
Longitude west of Berling, $6 \mathrm{~h} 47 \mathrm{~m} 40 \cdot 69$ s
Time of sunset
5h 26 m Chieago Neen Time

12	13	40.69	Berlin Woan Time
	2	00.52	Reduction to Sidereal Time

Sid. Time, 0 hre., Berlin Berlin Sid. Time

13	24	29.01
25	40	70.22

Reduction to Sidereal Time

Chicago West of Berlin
Chicago Sid. Time
Moon's R. A.
Moon's hour angles Chicago
Hoon's declination $15^{\circ} 25^{\circ} 45^{\prime \prime}$ South " polar distance $105^{\circ} 15^{\circ} 45^{\prime \prime}$

In the Figureg
$P Z$ equals co-latittude, $47^{\circ} 25^{\circ} 48^{\prime \prime}$
$Z P S_{0}$ moon ${ }^{\text {² }} \mathrm{s}$ hour angle $72 \quad 52 \quad 28$
PS, polar distance, $105 \quad 25 \quad 45$
2II, a perpendicular to PS

at suneot, Chieaso

6.47	40.69			
18	52	29.53	at sunset, Chicago	
14	00	59.66	"	
4	51	29.87	"	
4	" or 72°	$52.282^{\prime \prime}$		

$\begin{array}{rrrrr}\log & \sin & 47^{\circ} 25^{\circ} 48^{\prime \prime} & \text { is } 9.8671472 \\ n & a & 7252 & 28 & 9.9803042 \\ " & \text { " } & 44 & 43 & 59\end{array}$

\log	\sin	$47^{\circ} 25^{\circ} 48^{\prime \prime}$	is 9.8671472
n	a	7252	28
$"$	"	44	43

\sin FII equals tan $2 \mathbb{2 l}$ cot ZPS
$\log \tan 444359$ is 9.9959531
" cot 725228 9.4887313 $\begin{array}{llll}* \\ -\quad \sin 274628 & 9.4887313 \\ 9.4846844\end{array}$

MS equals $105^{\circ} 15^{\circ} 45^{\prime \prime}$ - PMg, or $87^{\circ} 29^{\circ} 17^{\prime \prime}$
Cds 25 equals cos MS cos 2 M

$\log _{\text {m }} \cos$	87	29	17	is	8.6417483
"	"	44	43	59	
"	"	88	13		9.8514990

$$
\text { " " } 8813 \text { 8.4932473 }
$$

 Parallax True altitude Refraction Apparent altitude
$\frac{1}{0} \frac{1}{40}$,

$0 \quad 23$
10098

$2^{\circ} 09^{\prime}$ is far below the minimm altitude for visibility of the moon at sunsot. See the numerous published reports of astronomers.

The moon's age at sunsot, Chicago, 23h 56m Distance from sun in longitude, $13^{\circ} 43^{\prime}$ Crescent a very thin $1 \mathrm{ine}_{\text {, at }}$ widest part only $0.4^{\prime \prime}$ thick, or $1 / 70$ moon's diameter. In a daszling, glaring sunset sky, far below limits of visibility.

The position of a heavenly body, as given in the Ephemeris, is geocentric, and is true only for a place on earth where the heavenly body is in the zenith. Corrections for parallax always have to be made, otherwise.
which we hold, as stated in Vol. 5, but we read in R \& $\mathrm{H}, 12-18-1888$, that "The severest eriticism" will come upon "every position that has been taken for the truth." Any position or argument in behalf of the truth which is inaccurate will surely be noted, and "the wisdom of the world's wise men will be too much for us."

The "Translation Cycle," called also on page 35 the "Phasis Curve," corresponds in part to column 4 off the Table on page 33, "Period from Conjunction to Phasis." This translation period is based upon a postulate that the day of full moon in each month is the 13th day of the month. This is an addition to the postulate that Misan 13 was the day of full moonly in that month. It has been denied that this translation period was thus obtained. There are, however, four different proofs in the document that it wes thus obtained. It would still be faulty, howover, if after the Nisan phasis the succeeding phases were considered to follow always at s.lternate intervals of 30 and 29 days, and the following criticism would still apply.

It is asserted on page 34 that the Translation Cycle "represents the actual time in days, hours, and minutes it takes the moon to go from conjunction, when she cannot be seen, to her phasis, or first appearance." This statenent is, in frequent instances, untrue.

On page 35, to follow Diagram C, is the statront, "In the phasis curve, we see the combined result of all the oauses which conspire to hasten or rotard the visibility of the nascent moon." This statement is not true.

The phasis curve, in Diagram C, is derived solely from the interval from conjunet ion to full moon, shown by the sine curve at the bottom of the diagram. And this varying interval from conjunction to full moon, is dependent solely upon the new lioon's position with reference to perigee. It pertains only to the speed of the moon forvard in its orbit, without regard to its gidewise buing in latitude, which in the fall of the year has a greater influence to retard the visibility of the new moon than periges has to hasten it, if the moon at that time is in the southern part of the zodiac. That is why Hevolius, quoted in your Report, says that one of the three concurront essential conditions for early phasis is that the moon be "in the northern border" of the zodie.c.

This phasis curve also has no relation to the time of the year, the longitude or aign of the zodiac in which the moon is, the inclination of the ecliptic to the western horizon. Thís is a factor which, in the spring, overbalances both the others in hastening the visibility of the new moon. That is why Hevelius states that the moon must be"in the signs of long settings" for early phasis.

Fotheringham agrees with Hevelius, as all astronomers must indeed do, in giving three conditions which must all be present for the earliest phasis, in 24 hours. Evidence of this appears on page 35 of your Report.

I ask you to 100 k at the large 10 -foot chart which I sent for the inspection of the Comittee, and observe thereon how this theory repeatedly calls for a very early phasis in the fall, when this is actuslly impossible. It also calle for a late phasis in the spring, when the phasis is actually early.

IVery astronomer will tell you that the phasis of the moon depends upon its altitude above the horizon at sunset, and that this altitude is affected by all three of Hevelius' factors. While it may be known that the moon would certainly be seen at a certain altitude, it is impossible to know whother the moon would have that altitude by merely considering the moon's position relative to perigee. The astronomer will always want to know whether the moon is in north or south latitude, especially in the fall; and he will always want to know the time of year, whether the ecliptic makes a high or low angle with the horizon in the west.

Diagram C and its discussion overlooks completely twa of the three factors involved.

To men who really know "all the causes which conspire to hasten or retard the visibility of the nascent moon" this diagram will, if published, appear naive.

It will appear somethat like copyrightin g as a discovery a representation of a cube mandin by only 4 straight lines, without showing the third dimension.

Great sport crould be made of a denomination manmanmmundern claiming such a discovery. As far as possible, we should avoid putting into the hands of the enemies of God's truth anything upon which their ridicule can be turned gaingt against God's people, and which their enmity wi.ll use against the truth itseli.

I have repeatedly noticed, in mattor sent to me on this subject, a failure to recognize the complexity of the moon's motion. The moon's average motion, with lunar months invariably at intervals of 30 and 29 days, eto., is adopted, without talking into account factors which take the moon away from its average position.

The motion of the moon is too complex to permit of its being accurately repreeented by some of the graphs which have been propared.

The symetry of the "62-year curve" on the Thle dated Nov. 5, 1940, "Construction of Aramaic Calendar in Time of Izra and Nehemiah," was preserved only by an arbitrary change in the date of the full moon in 411 B.C. Instad of allowing the true date of the full moon to correct the adopted theory, the date of full moon was changed to fit a theoretical translation period. The change of the true date was abmegan made to fit a theory which "demanded" something contrary to the fact of nature. This change was excused by the statement that
"inasmuch as the passover full moon was April 11.68-nearly after sunset-- it is probable that April 13 was taken as the passover day."

Inasmuch as the moon fulled at 4:19 P. M. on April 11, and sunset was not until 6s25 P. M., a good deal of violence is done to the factual evidence to sustain a. theory.

Our enemies would make great capital of such changing of facts. The symmetry of the curve before 411 illustrates an average position of the moon, while the lack of symmetry at 41I, if the true date were preserved, illustrates the fact that the moon's motion is not so simple as the theory supposed.

To determine the position of the moon at a given time, about 1500 terms have to be taken into account, in the latest work by \mathbb{E}. W. Brown.

I append three sheets of diagrams which illustrate some of the irregularities of the moon's motion, which take it sometimes far sway from its average position.

Unequal Wotion of the Noon in its. Orbit

- Base Line represents the Mean Fosition, from which the moon is constantly varying.

The moon's place is calculated by first taking its motion as uniform, and auperposing on the resuitthe heights of a great number of weves, of winich five are shown above. Each wave repeats itself indefinitely. Since their periods are different, each month hes a different combination of readings. Many hundreds of waves are ineluded in Brown's Tables of the Moon. It is merely for convenience that the above waves are all repre sented as starting at the same pointg actually this seldom or never happens.

This is the reason of the great complexity in the moon's motion. "Practically, it never repeats itself exactly."
(A. C. D. Crommeling Greenwich Obs.)

The moon's elliptical orbit about the earth may be thought of as the long circum* ference of an egg lying upon a flat surface, along which circumference the moon moves at constantly changing speeds as it approaches or recedes from perigee.

The plane of motion in the shell is constantly changing.
The egg itself turning around, its end pointing constantly in a different direction.
This direction jerking back and forth in unequal amounts.
The egg with a soft shell, constantly lengthening and shortening.
A Point in the yolk, off center, representing the earth, is chenging its position.
The egg moving in a large path, elliptical in shape, at varying speeds.
The size of this path constaatly changing, affecting the speed.
The ellipticity of the path constantly chenging, affecting the speed.
And other changes taking place, all affecting the spped and position of the moon.

The moon being already ahead of or behind its mean place because of its elliptic orbit, its motion is further complicated by changes in

Another modification of the moon's motion is caused between full and new moon, when the sun pullsthe moon forward in its orbit; and between new and full moon, when the sun's attraction retards it.

Irregular Changes in the Direction of the Axis of the nova's ut navy constantly moving the moon away from its mean place.

The sun's attraction changes the direction of the axis, making the longitude of perigee move forward and backward irregularly, but in the long run making a forward move mont of about 3° per anomalistic month, completing a revolution in 8.853 years, on the average. The diagram shows the mean position of perigee from June, 1940 to June, 1941, and the widely contrasting actual position of perigee, on and More

The length of the lunar month constantly varies, and is never the same in two consecutive months. In 1939 the lunar months varied from 29 d 6 h 50 m to $29 \mathrm{~d} 19 \mathrm{~h} \mathrm{01m}$. In the long run the length is 29.530588 days. Exact accuracy is not obtained by always counting the lunar month as $29 \frac{1}{2}$ days.

And the liosaic months, always beginning with the first appearance of the new moon, vary still more in length. They do not conform always and invariably with alternate periods of 30 and 29 days. While the modern Jewish calendar, based upon the average position of the moon, has, for example, 30 days for Sivan and $A b$, and 29 days for Tamuz and Elul, the visible new moon would sometimes make Sivan or Ab 29 days, and Tammuz or Elul 30 days, or sometimes have two consecutive months of 29 or 30 days. This is plainly stated in the Talmud, and also by the Karaites.

For this reason. we cannot always obtain conclusions of assured accuracy by reckoning the Mosaic months from Nisan to Nisei as invariably $30,29,30,29,30,29,30$ days.

N. A. Noshbum

Dear Brethren of the Committee，

I have written two letters to you，sending them to the chairman，under dates of Jan． 30 and April 25，1941．I sent these bogause I had been engaged in a long and laborious correspondence which I felt I could continue indefinitely， in which I had presented facts which I thought should receive the attention of the committee，but which I thought had not come to your attention．

There is another important matter upon which I wrote six months ago，but have not felt free hitherto to send to any of the Committee，because in correspondence I had been asked not to take issue with a certain position which was considered as settled．To question this at that time I feared might lead to personal feelings which should be avoided．

Before taking up this topic，I wish to state that some diagrams and written matter which come to me just before the General Conference，and which I saw in some of your honds a．t the Conference，misrepresent me．

When I was first solicited to comment upon the report of your Committee，I was ob－ liged several times to write in great haste，on three occasions on Friday afternoon，not very long before sunset．Under these circumstances I made some erroneous statements， which I thereafter corrected．

Notwithstanding my corrections，some of these errors continued to be held against me for more than l⿳亠口冋⿱十又⿴⿱冂一⿰丨丨丁心 years，and cited as evidence of my untrustworthiness．

This last comunication has something which is marked＂Citations from Hiler Washburn＇s criticism sent in 1939．＂That was not a criticism．It was sent in January，1939， months before there was a report to criticise．In 1934 Brother Froom had seen a diagram and accompanying statement of mine which he asked that I send to him．The first part of the statement，the essential part，was something I wrote 26 years ago．

With the matter sent me is a sheet numbered＂－8－＂，on the corner of which is writton，＂Copy from Dr．Wood＇s answer to Washburn．＂You probably have it also．

This is my first knowledge of such on answer．
At Bro．Froom＇s request I sent him a hurriedly written comment on Part IV by Bro． Wood，which he turned over to Bro．Wood．In my haste I made an inverted statement which I corrected in my next letter．Ny true position could be seen，even without my correction， by noting the statenent I had sent in several months before relative to the reign of Artexerxes．

Bro．Wood wrote me on July 26，1939，＂I will not go into the answer of your ques－ tions，but hope after the beginning of September when the sumer session has closed，to be given time to go into this matter more fully．Before anything is publishod we will send the matter to you with careful replies to all your criticisms．＂I have heard nothing since．

Miss Amadon now quotes from＂Dr．Wood＇s answer to Washburn，＂in which I am not rightly represented，for quotation is made from my letter in which I made the hurried mistake，and which I corrected，in June， 1939.

I might say that on my statement of 26 years ago，and repeated in my 1939 correspondence，there was a point which seemed to be proven by the data to which I then had access．This referrod to whether Kisleu reached beyond Dec． 17 in 465 B．C．I have better information nov，and do not hold to that particular point．And I have never hold that point to be absolutely vital．Our published arguments，as by Bro．Spicer， contain everything that is necessary．

You have seen ond the repreduction of one of my charts three questions, all of which can be answered except the third: "Why cite modern Jewish calendar for the first century? I admit that I was as much in earor then as is Miss Amadon in her retaining in her arguments such features of the modern Jewish calendar as invariable lengths of months, and embolismic years by fixed rule. Months determined by observation of the moon begin aftor the moon is first seen, whether the interval since the last new moon be either 29 or 30 days. Miss Amadon has abandoned this features of the Mosaic calondar, and without knowing what the agricultural season was in any given year, withoutknowing whether the barley harvest was early or late, inserts embolismic years by rule. These last charts heve embolismic yeers where it would be impossible, and vice versa.

Wuch of Wiss Amadon's argument hangs exclusively on these features borroved from the Jewish celendar of computation, which gives only the average position of the moon from which the real moon may vary greatly, according to authorities sho has quoted in her discussions.

Several months ago I was asked not to take issue with Postulate 1 , that the full moon of lisen always fell on Nisan 13. I now feel that I should fulfil my promise to give my comment on this and the deducftions which have been made from the datings in the papyri of the 5 th century B.G.

The shoets which follow contain the essentials of this matter. The full moon detes have been taken from Miss Amadon's paper. The Julian dates for 1 Tho th have been demonstrated by the highest authorities, acceptid by Bro. Wood, and admitted by Miss Amadon since her paper was written.

$$
\begin{aligned}
& -0-1 \\
& --0-1
\end{aligned}
$$

I did not inject myself into the discussion of these matters. I have been repeatedly solicited to send my suggestions and criticisms, and requested to "give immediate attention," to "work ravidly when materials are placed in your honds,". to make "speedy responses," etc.

In return I have been caught up on isolated statements made in this hurried work, and the errors have been held against me, after I had corrected them. Repeatedly I have been reminded of Gal. 4:16.

We will a.ll admit that one is subject to erroneous arguments and conclusions if we do not have a sincere desire for truth.
"Those who sincerely desire truth will not be reluctent to lay open their positions for investigation and criticism, and vill not be annoyed if their dpinions and ideas are crossed."
R \& II, 7-26-92

I went to say that I appreciate the amount of hard work which has been put into this investigation, for I have spent many weeks in going into the details of everything that has been sent me. I hope no person will feel that I have had any other object in my criticism than to respectffully present facts for the purpose of aiding the Committee in publishing only that which will stand the searching scrutiny which an entegonistic scholarly world is certain to give.

Yours sincerely,

> H. A. Wa.shburn.

GALBMDAR USAGE OF THE ARAMAIC PAPYRI OF THE 5 th CENTURY B.G.
In no case do the datings of these documents permit Nisan 13 to be the day of full moon. They are, in everycase, evidence against the postulate upon which so much argument has been built.

Papyrus "A", 471 B . C. "On the 18th of Blul, that is the 28 th day of Pachons."
This was Sept.12, Julian calendar. (Agreed to by L.H.Wood)
The preceding 1 Thoth was on Dec. 19, 472.
28 Pachons, the 268th day of the Egyptian year, was 267 days after Dec. 19, or Sep. 12.
18 Elul is the 166 th day of the Hebrew calendar, as used by Miss Amadon. 1 Nisan was 165 days before Sept. 12, or March 31, and 13 Nisan was April 12.

The full moon did not occurr on this day, April 12, but on April 14.52 J.C.T. Therefore the calendar used in 471 B.C. had the full moon on Nisan 15, nd not Nisan 13.

> Papyrus "B" proves the same, but I leave its discussion to the last, as the way it is used in Miss Amadon's paper would make seven years of Artaxerxes' reign end before 457 B.C.

Papyrus "D", 460 B.G. Miss Amadon presents the evidence that this document was drawn up on 21 Heswan, "that is the lst day of Mesore." This was liov. 11, 460 D.C.

The preceding 1 Thoth was Dec. 16,461 B.G.
1 Mesore, the 331st day of the Egyp. calendar, was 330 days later, or Nov. 11, 460.
21 Heswan is the 228th day of the Hebrew calendar used.
1 Nisan was 227 days before Nov. 11, or Mar. 29, and 13 Nisan was April 10.
The full moon did not occur on April 10, but on April 12.34, which was Nisan 15.

Papyrus "30", 451 B.C. "On the 7 th of Kisleu, that is the 4 th day of the month Thoth."

1 Thoth was Dec. 14. 4 Thoth was Dec. 17.
7 Kisleu is the 243 rd day of the Hebrew colender used.
1 Misan was 242 days before Dec. 17, or Apr. 19, and 13 Nisen was May 1.
The full moon did not occur on May 1, but on May 2.73, which was just before the sunset close of Nisan 14, and might be supposed to be on the 15 th.

For the year 411 B.C., when the moon was full on April 11.68, which was $4: 19 \mathrm{P}, \mathrm{M}_{\text {, }}$, and sunset was at 6:25, Miss Amadon holds that on account of this proximity of full moon and sunset, "it is probable that April 13 was taken as the passover day." She does this in order to maintain the correctness of a theoretical graph. If she wore justified in that, then certainly the full moon was on Nisan 15 in 451 B.C.

Papyrus "F", 440 B.c. "On the 14 th day of Ab , that is the 19 th day of Pachons." August 26. 1 Thoth was Dec. 11. 19 Pachons, the 259th day, was 258 days later, or Aug. 26.

14 Ab is the 132nd day of the Hebrew colendar used. 1 Nisan was 131 days earlier than August 26, or April 17, and 13 Nisan was was April 29. The full moon did not occur on April 29, but on Mgy 1.28, which was Nisan 15.

Papyrus "J", 416 B.C. "On the 3rd of Kisleu, . . the l2th day of Thoth."
1 Thoth was Dec. 5, and 12 Thoth was Dec. 16.
3 Kisleu is the 240 th day of a 355 -day year.
1 Nisan was 239 days earlier than Dec. 16, or April 21, and 13 Nisan was May 3.
The full moon did not occur on Mey 3, but on Nay 5.49 , which was Nisan 15 .

Papyrus "K", 410 B. C. "On the 24th of Shebat, t. . the 9th day of Athyr."
1 Thoth was Dec. 4. 9 Athyr, the 69 th day of the year, was 68 days after, or Feb. 10.
24 Shebat is the 319 th day of the year.
1 Nisan was 318 deys before Feb. 10, or Narch 29, and 13 Nisan was April 10.
The full moon occurred on April 11.68 in the first document of Miss Amadon's, What which would be Nisan 14. As she contends for a recognition of the full moon on April 12, in order to maintain the correctiess of her theoretical graph of translation periods, $\neq f$ the full moon would fall on Nisan 15.

Papyrus "EF", 446 B.C. "On the 3 rd of Kisleu, that is the 10 th day of the month Mesore."

1 Thoth was on Dec. 13. 10 Mesore, 339 days later, was Nov. 17.
3 Kisleu is the 239th day of the 383-day year.
I Nisen was 238 days before Nov. 17, or March 24. Miss Anadon will object to this date, on the ground that it was bofore the vernal equinox. But dating of the document shows that Mar. 24 was Nisen 1 , the men of $446 \mathrm{~B} . \mathrm{C}$. not being governed by a rule that some layk down at this late date.
13 Nisan would be April 5 .
The full moon did not occur on April 5, but on April 8.89, long after sunset, so that the full moon date would be April 9, Nisan 17.

All this is on Miss Amadon's assumption that the Hebrew months anciently from Nisan to Tisri were invariably as they are in the present Hebrew calendar, 30, 29, 30, 29, 30, 29 days without variation, a colendar of calculation, not of observation. Our best evidence is that the Mosaic calendar was based upon actual observation of the moon, just as the mohammeden calendar at Gairo todey, and as stated by the Karaites. Both the Talmud and the Karaite statement show that actual observation of the moon itself sometimes made a month, as Elul, ordinarily 29 days, to be 30 days, and 30 day months to sometimes be 29

Jven if we presume that the scribe made a mistake of 3 Kisleu for 2 Kisleu , the moon would be full on Nison 16 .

Papyrus "B", 464 B.C. "On the 18 th of Chisleu, that is the 7 th day of Thoth."
I think we shall make a great mistake if we substitute 17 Thoth for 7 Thoth as Cowley translates it. The authors who are followed in making this change evidently made the change so as to harmonise with the common assumption that Artaxerxes began to reign in 465 B.C.

In adopting this change, we obtain Jan. 2, 464, as a time when Artaxerxes was already sitting on the throne. Seven years of his reign could not reach past Jan. 1, 457, at the latest, making the decree of Ezra 7 in 458 B.C.

But even assuning the document should be read 17 Thoth, it is against the Postulate.
1 Thoth was Dec. 17, and 17 Thoth would be Jan. 2.
18 Kislou was the 255 th day of a 355-day year.
1 Nisan would be 254 deys before Jon. 2, or April 23, and 13 Nisan would be May 5, 465.
The full moon did not occur on May 5, but on May 7.63 , which would be Nisen 15 .

But let us take the date without changing it,
as we surely ought to do,
Thoth 7, which would be Dec. 23.
18 Kisleu was the 255th day of a. 355-day year. 1 Nisan would be 254 days before Dec. 23, or April 13, and 13 Nisan would be April 25. In 464 the full moon of Nisen was on April 27.11 , which would be Nisan 15 .

The document was drawn up in the latter part of 464, and its date permits the 7 th year of Artaxerxes reign to reach well over in 457 B.C.

This papyrus dating, taken just as it stands, and given by Cowloy, is importent contemporary evidence supporting our denominational position as to the beginning of Artexerxes' reign in 464 and not in 465 B . C.

Papyrus "H". Nothing can be proven from this document, for the day of the month is not given. If Elul coincided with Payni, it is more likely that 1 Elul fell in with 1 Payni than that 29 Mlul fell in with 30 Payni.

$$
\begin{array}{llll}
- & - & - & - \\
- & - & - & - \\
\hline
\end{array}
$$

As the Jewish day begins at sunset, it overlaps 2 Egyptian days. The night part of the Jewish day corresponds to an earlier Egyptian day then does the day part. But as men transact business as a rule in the day, and not in the night, the synchronism of a Jewish date would be with the second Egyptian date.

If it were pleaded that all these trensactions of the 5 th century B.C. were in the night, and none of them in the daytime, even then the full moon could be moved back only to Nisan 14, never to Nisan 13, except in one case (Papyrus "30", 451 B.C.), when it would occur near sunset at the close of Nisen 13.

The result would be the same if the transaction were in the daytime, but with the Jewish date synchronized with the Egyptian date on which it began, with a l-day difference on the Julian calendar between the Hebrew and Egyptian dates, the Hebrew date of the document being 1 day later in the Julian cal endar than the Igyptian date in the document.

This last assumption has the adventage of malking the 5 th century
l Nisan dates all begin after conjunction.

I hailed with delight the first presentation which seemed to show that Nisen 13 was the day of full moon in the ancient Jewish celendar. But when I came to examine Cruse's translation of Busebius, cited in the Report, I found that it did not read as it had boen quoted. The reading could not be made to mean that the full moon fell on Nisan 13. I then concluded that the quotation was a translation of a translation by Casperi, and probably did not accurately reflect the original Greek. When I had opportunity, I examined all the Greek texts of the original, and the translations, in the large library of the University of California.

I give in parallel the translations of the Loeb Classical Library, of A. C. MeGiffert endorsed by Philip Schaff, of Cruse, and the trenslations of Nancel's translation and of Cedpari's Germen translation, used by Miss Amadon.
"And as the fourteenth of the month, at evening, is assigned as the day of the passover, "And as the day of the passover was appointed on the 14 th of the month, beginning with the evening, "And since the day of the passover is given on the 14 th of the month at ovening,
"And since the passover was appointed on the lith day of the first month, after the evening
"That the day of the paschal festival begen on the 14 th of Nisan after the evening,
"the moon will have its place in the station that is dimetrically opposed to the sun,
"the moon will hold a position diametrically opposite the sun,
"the moon will stend diametrically opposite to the sun,
"when the moon is caught in the region opposite to the sun,
"when the moon stands diametrically opposed to the sun,
"as may be seen in full moons."
" " " " " " " " "
" " " " " " " " "
"as even the eyes may see." .
"as anyone can see at the time of full moon."

The Greek texts
have a comma after the word hesperan, "evening."

Aristobulus uses the language of Scripture, and his meaning must be the meaning of the Scripture.

"On the fourteenth dây of the month at even, ye shall eat unleavened bread." Ex 12:18
"In the fourteenth day of the first month at even is the Lord's passover. And on the fifteenth day of the same month is the feast of unleavened bread." Lev, 23:5,6.

The Scripture means that at the sunset close of the fourteenth dey the passover festival began, that it was in the night of Nisan 15 that the lomb was eaten and the firstborn slain, and in the morning of Nisan 15 Israel leit Egypt. Ex. 12:6,8,18,29; Lev. 23: 5,6; Num. 33:3.

The scripture says nothing about the full moon. Aristobulus(s language indicates that the moon was to be full on Nisan 14, after its sunset close, when the passover festival began, on the 15 th of lisan, the first day of unleavened bread.

The men of the 5 th century B.C. in Rgypt appear to have takon the day of full moon to be Nisan 15. They essuredly did so, if they reckoned their months as does Miss Amadon, with invariably 177 days from Nisan to Tisri.
P.S. If it be ollowed that the papyri synchronize the Hebrew date with the Egyptian date on which it begen at sunset, making the Julian date one day later duhph for the Hebrew date than for the ggyptian, then the evidence points to full moon on Nisan 14. I now prefer this viev.

Not so long ago, you, wrote me an enthusiastic response and acceptance of the syllabus. Inasmuch as this outline contains the summary of the argument, Willerite I concluded that you were in harmony with what is there presented. Now, you keep repedting that Part V is faulty and seem anxious to demonstrate its errors. Part V, demprefescon represents bur first approach to this important phase of prophetic chronology. After two years of earnest, study, the whole presentation has beoome much simplified. And you-ahould gealongt

The very fact that the Tisri phasis could not be seen in the autumn of 1 1844 , in \wedge Boston, the very center of the movement, plainly indicates that the Tisri new year was not the important moon to observe! The movement was in America, and on this ground the problem had to be solved. But, if the leaders had delayed until the ootober conjunction for a confirmation of the prophetic date, there would have been no seventh month movement! For it was the certainty of the dates, as based upon the Nisan new year, that so aroused the people at the Exeter meeting. But New England -- not Jerusalem- was the fround, and April was the time that marked the beginning of the lastistretoh of the propheoy of Dan. 8:14.

The April conjunction was at noon, of the 17 th. The moon could not be seen on that date, for the time was too short between conjunction and sunset -- only six hours. On the evening of the 18th, the young moon lingered an hour and a half in the sky before she set. This means that she was high on the horizon, after sunset, about 20 degrees, perhaps. Certainly she could be seen. Consequently, April 18, after sunset, was the right point of time for the moon's phasis, and no other! April 19 was therefore, Nisan 1, and 177 days added to this date, made Tisri 1, or October 13. The whic ar unw pan tho seblear.

According to your recent letters, you object to the 177 -day blanket reckoning. You argue that there were sometimes two consecutive 29-day months, or two conseoutive 30 -day months in the Jewish feast period from Passover to Tabernacles. You have not given sufficient authority, for this statement. The Aramaic dates are against you. several of these papyri dates came after Tisri, in the autumn, and all figuce straight back, without any irregularity, to a Nisan 1 date that is based upon the passover principle of reokoning. This is an important contribution to early Jewish oalendation, and this passover principle is the first to bring harmony and coincidence between these Aramaic and Egyptian dates of the now famous papyrus rolls.

You argue that early Jewish reckoning was all observation -- no oomputation. The Committee has never taken such a position. Part V represents computation as being introduced in the second century B.C., according to the authority of Albiruni and Sidersky. But the Bible itself seems to indicate that the Jews were computing during the time of the first temple. David said with finality to Jonathan: "Tomorrow is the new moon." A little later, we find Saul keeping a new year feast on the very evening of the phasis, apparently. The Scriptures read: "And when the new moon was come, the king satehim down to eat meat" (1 Sam. 20:24). Dswid'o staterwert coubd noo have bev bared whace af -

Your disoussion of the Egyptian oalendar, while interesting, is irrelevant to our problems just now. Last October, Miss Amadon sent you her original bulle of the papyri dates. In this chart, the Egyptian dates were computed aocording to the number of Egyptian new year ohanges occurring in each particular interval, thus doing away with the necessity of using the oalendar tables at all. λ In order to be in harmony with Dr. Wood, she adopted the 26th of February for the beginning of the Nabonassar era. When your oriticism came along, she she already had the oharts ready, and sent them to you.

Your challenge of the true position of Nisan 14 is disturbing. Your method dively upsets the harmony in the papyri calendation.

If you have anything to offer on the Millerite ohronology, send it along. We shall all be interested.

Tholcomy", E-Tipse 1, on 29 Thoth, Mar. 19s,19h, $4 \mathrm{~m}, 721 . \mathrm{R}_{2}, C$.
 Anly correct position: I Thath $=$ Feb. 20 in 72 7 BC. and therefore $=$ Feb. 26 , in 747 BC.

Exipse2, 18 Thoth, Mav, 8d, $21 \mathrm{~h}, 30 \mathrm{~m}, 720$.B.C.

Ptolemy states elsewhere (Almapest, chi, VII, Guinness, Li9ht for L.0., 399) that this eclipse wa on the night "between the $18^{\text {th and }} 19^{\text {m }}$ " proving aquin that 1 Thoth did

Similar diagrams for all the other eclipses give identical results. All agree in making Feb. 26 to be 1 Thoth in 747 BC.

The position of 1 Thoth, thus FIXED by the eclipses, also fits precisely the Sothic Cycles otherwise determined.
We obtain July 19 for 1 Thoth in 140 AD, the first year of a Sothic Cycle, when 1 Thoth Sirius ("Soth") in Egypt, which is July of ${ }^{2}$ And we obtain July 20 for 1 Thoth in 139 AD , the last years of a Cycle.
See Breasted's argument for the beginning of a Sothic Cycle and introduction of a calendar on july July 19 every 1460 years, in 2781 BC , 1321 BC , and 140 AD .

In your computation from these ecli.pses, you have ade at least one error in overy case. In most case yave a correct result in the last column of Table III.

But in these instances, just as in your astronomicel argument for Oct. 22, in 1844, your untrue reasoning would invalidate your conclusion.
Truth will be rejected and condemned by the world if they see it based upon erroneous argument. There is alway ans irrefutable argument. I am sorry to read
your fallacious argument for Oct. 22, and then conclude with the most sweeping declaration of its absolute irréfragability. The world's scholarship will find y error when they unite in scrutiny and "severely criticize" every position ($5 \mathrm{~T}, \mathrm{p} 717$).

There is an incontrovertible argument for oct. 22 which you ignore. I trust that you will now be disposed give consideration to what you have treated as a

PtolemyssEclipsel, on 29 Theth, March 19, T21 B, C, , at l9h.Am. Thy your position, the clipse could not occur on 29 Thoth:

Thath
Only correct position: 1 Thoth $=$ Feb. 20, in 721 .B.C.
Stolemy's Eclipse 2, on 18 Thoth, Tharch 8, $720 . \mathrm{B} . \mathrm{C}$, at 21 h .30 m . 13y your position, the celipsce could hot occur on i8 Thoth:

Ptolemy states elsewhere, Almagest ch.vii (Guinness, Light forluor Daxs, 399), that eclipse 2 was in the night
"between the 18th and 19th",
Sirmilar diagrams for all theother eclipses give identical results.

The position of 1 Thoth is FIXED by these eclipses, so that it
cennot be moved either way. This evidence is FTNAL, whatever different position cannot be moved either
some writers may take.
All the other eclipses dated in terms of the Egyptian calendar give identical
results. This gives precise agreement with the beginning of a Sothic Cyyle on July 1919
AD, when 1 Thoth fell on the day of the helicacal rising of Sirius in Euypt, (see quotation from Breasted in letter).
This gives precise agreement with the statement of Censorinus as to the date
June 25 , mhen on which 1 Thoth occurred in the year he was writing, 238 AD.
All concur in placing 1 Thoth on Feb, 26, in 747 BC.

$\therefore \because$

In your handling of these eclipses of Ptoleny, you have made two mistakes in
each case but one. In the one case, the eclipse of 128 BC , inster each case but one. In the one case, the eclipse of 128 BC, insted of taking the
date for 1 Thoth proceding the ecaipse, you took the date in your table following
the eclipse. Tt chanced that your date por the eclipse. It chanced that your date for the following Neer Year was the correct
date for the preceding year, so that thereby you got a correct result in your list date for the preceding
column of Tabie III.
In all the other instances, there are two orrors, one in each direction, so ncorrect date for 1 Thoth, 1 diving in that way the correct result. You have an orror in each case in the length of time from 1 Thoth to the Egyptian date of the rror in each case in the length of time from 1
clipse, making the interval one day too short.
your correct result does not validate your argument.

Similarly, in your astronomical argument for the date Oct. 22, in 1844 you use an untrue argument to establish this true date oft. 22 ending of the the
2300 years. Your argument there can be used to prove your conclusion wrong.

Truth will be rejocted and condemned by the world's scholarship if
they see orroneous argument used to support it. There is always an irref-
utable argument for truth. I am sorry to read your fallacious argument for
utable argument for truth. I am sorry to read your fallacious argument for
uiberf oct. 22, concluding with the most sweeping declaration of its absolut

position of truth" (5T, 717), they will find that your arguments and charts
here is an incontrovertible it aill give wITHOUT COUNS
of counsellors they are ESTABLISHED."

(2) Center for
 Adventist Research

The Andrews University Center for Adventist Research is happy to make this item available for your private scholarly use. We trust this will help to deepen your understanding of the topic.

Warning Concerning Copyright Restrictions

This document may be protected by one or more United States or other nation's copyright laws. The copyright law of the United States allows, under certain conditions, for libraries and archives to furnish a photocopy or other reproduction to scholars for their private use. One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research. This document's presence in digital format does not mean you have permission to publish, duplicate, or circulate it in any additional way. Any further use, beyond your own private scholarly use, is your responsibility, and must be in conformity to applicable laws. If you wish to reproduce or publish this document you will need to determine the copyright holder (usually the author or publisher, if any) and seek authorization from them. The Center for Adventist Research provides this document for your private scholarly use only.

The Center for Adventist Research

James White Library
Andrews University
4190 Administration Drive
Berrien Springs, MI 49104-1440 USA
+001 2694713209
www.andrews.edu/library/car
car@andrews.edu

Disclaimer on Physical Condition

By their very nature many older books and other text materials may not reproduce well for any number of reasons. These may include

- the binding being too tight thus impacting how well the text in the center of the page may be read,
- the text may not be totally straight,
- the printing may not be as sharp and crisp as we are used to today,
- the margins of pages may be less consistent and smaller than typical today.

This book or other text material may be subject to these or other limitations. We are sorry if the digitized result is less than excellent. We are doing the best we can, and trust you will still be able to read the text enough to aid your research. Note that the digitized items are rendered in black and white to reduce the file size. If you would like to see the full color/grayscale images, please contact the Center.

Disclaimer on Document Items

The views expressed in any term paper(s) in this file may or may not accurately use sources or contain sound scholarship. Furthermore, the views may or may not reflect the matured view of the author(s).

[^0]: Digitized by the Center for Adventist Research

[^1]: Digitized by the Center for Adventist Research

